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Overview

e Sequential Function Charts (SFCs)
e "“Unsafe” and “unreachable” SFCs

e Definition of “safe” SFCs

e Algorithmic checking for “safe” SFCs:
o Execution model for SFCs
o Formal specification of “safe”

o Model checking

e Summary, future work
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Sequential Function Charts (SFCs)

e Graphical programming language for PLCs
e Based on Petri nets and Grafcet
e Syntax and informal semantics defined in IEC 61131-3

e Concepts:
o Actions (embedding of other PLC languages)
o Parallelism

o Hierarchy
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Sequential Function Charts: Components
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Sequential Function Charts: Transition Types
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“Unsafe” and “unreachable” SFCs
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IEC 61131-3 calls these SFCs “unsafe” / “unreachable” ...

But construction still possible in many programming environments!
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“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):
e no jumps between parallel branches
e no jumps out of parallel branches

e every opening parallel branch is closed correctly

Formal (Petri net execution model):
e In each execution there is at most one token in each step.

e For every closing parallel transition there is an execution that

uses this transition.
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Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.

= Checking by model checking (Cadence SMV):
e Abstraction of SFCs
e Modelling of SFC executions in CaSMV
e Definition of “safe” in CaSMV
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CaSMV model for SFCs: Variables

Abstraction of the token flow:
e no program variables
® Nno actions
e guards are replaced by unconstrained Boolean variables

e one Boolean variable s; for each step

(s; = true: step s; has a token)

State changes of the variables:
e discrete transition system

e relation “next” between old and new values
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CaSMV model for SFCs: Transitions

Activity of step s; in the next cycle:

next (s;) = s;_will_be_entered V (s; N\ s;_will_not_be_left)

Step s; will be entered in the next cycle:

SJ
s;_will_be_entered = |
+qg —+ g/
(3t =(S,9,T) € Tr:s; €T Anext(g) A N\ s; [5] [
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Step s; will not be left in the next cycle:

s;_will_not_be_left = =3(S,¢9,T) € Tr:s; € SAnext(g) A N s,

SjES
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Requirement 1: At most one token in a step

More than one token in a step:

next (token_overflow) = \/ (

s; €St
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(8 A \/ (s; € T Nnext(g) A /\ s;)) S
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CaSMV specification: SPEC AG !token_overflow
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Requirement 2: Closing parallel transitions

We show for each transition (S, ¢g,T") € Tr with |S| > 1:

There exists an execution in which all s, € S are acitve.

. ge . 81‘ 82‘ 83‘
CaSMV specification: SPEC EF &, css;
+ g
54
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Implementation

Implemented as a tool:
e Input: SFC in IEC 61131-3 or Siemens syntax
e Output: CaSMV code and CTL specification

Output of CaSMV:
e OK — SFC is “safe”

e Error trace (helpful to locate the problem)

= requires only minimal interaction by the user
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Summary and Future Work

Summary
e The problem of “unsafe” and “unreachable” SFCs

e Algorithmic approach to check for “safe” SFCs:
o abstract CaSMV model

o tool-supported automatic verification

Future work
e Embed tool into PLC programming environments

e Combine with other automated verification approaches,

e.g., static analysis
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