A Model-Checking Approach to Safe SFCs

Ralf Huuck
School of Computer Science & Engineering, University of New South Wales, Sydney, Australia

Ben Lukoschus

Department of Computer Science, University of Kiel, Germany

Nanette Bauer
BASF AG, Ludwigshafen, Germany

CESA 2003 - Lille, France - July 9-11, 2003

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 1

Overview

e Sequential Function Charts (SFCs)
e "“Unsafe” and “unreachable” SFCs

e Definition of “safe” SFCs

e Algorithmic checking for “safe” SFCs:
o Execution model for SFCs
o Formal specification of “safe”

o Model checking

e Summary, future work

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 2

Sequential Function Charts (SFCs)

e Graphical programming language for PLCs
e Based on Petri nets and Grafcet
e Syntax and informal semantics defined in IEC 61131-3

e Concepts:
o Actions (embedding of other PLC languages)
o Parallelism

o Hierarchy

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 3

Sequential Function Charts: Components

<«— step

~ transition

—+ 91 <«—— guard

S9 S| actionl | <—— action block
N.iction2~
‘\\ action name
— 92 action qualifier
S3 R| actionl
- 93

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 4

Sequential Function Charts: Transition Types

— 91 +-92 193

S9 S3 S4

({81}7917{82}>
({81}7927{33})
({s1},93,{s4})

CESA 2003 - July 9-11, 2003

)

53 S4

(151}, 9,152,53,84})

({81782783}797{84})

+9

S4

S5

({31,82,83},9,{84,85})

Ben Lukoschus: A Model-Checking Approach to Safe SFCs

5

“Unsafe” and “unreachable” SFCs

S 1‘ S 3.

1 1 1

S92 84.
S5

S5

S3

IEC 61131-3 calls these SFCs “unsafe” / “unreachable” ...

But construction still possible in many programming environments!

CESA 2003 - July 9-11, 2003

Ben Lukoschus: A Model-Checking Approach to Safe SFCs

6

“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):
e no jumps between parallel branches
e no jumps out of parallel branches

e every opening parallel branch is closed correctly

Formal (Petri net execution model):
e In each execution there is at most one token in each step.

e For every closing parallel transition there is an execution that

uses this transition.

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 7

Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.

= Checking by model checking (Cadence SMV):
e Abstraction of SFCs
e Modelling of SFC executions in CaSMV
e Definition of “safe” in CaSMV

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 8

CaSMV model for SFCs: Variables

Abstraction of the token flow:
e no program variables
® Nno actions
e guards are replaced by unconstrained Boolean variables

e one Boolean variable s; for each step

(s; = true: step s; has a token)

State changes of the variables:
e discrete transition system

e relation “next” between old and new values

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 9

CaSMV model for SFCs: Transitions

Activity of step s; in the next cycle:

next (s;) = s;_will_be_entered V (s; N\ s;_will_not_be_left)

Step s; will be entered in the next cycle:

SJ
s;_will_be_entered = |
+qg —+ g/
(3t =(S,9,T) € Tr:s; €T Anext(g) A N\ s; [5] [
SjES
AV = (S,¢',T") € Tr\ {t} :next(g) = J\ —next(sy))
SkET’\T

Step s; will not be left in the next cycle:

s;_will_not_be_left = =3(S,¢9,T) € Tr:s; € SAnext(g) A N s,

SjES

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 10

Requirement 1: At most one token in a step

More than one token in a step:

next (token_overflow) = \/ (

s; €St
[J
(8 A \/ (s; € T Nnext(g) A /\ s;)) S
(SagaT)E Tr SjES 1 g
SHET Si‘
v (\/ (Si c T1 M T2
Sa ,T ET’I“
ES;,Z,TSE . /\next(gl) Anext(g2) SL 82
InS=b A A sy) 1 g+

s;€51US2 S

CaSMV specification: SPEC AG !token_overflow

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 11

Requirement 2: Closing parallel transitions

We show for each transition (S, ¢g,T") € Tr with |S| > 1:

There exists an execution in which all s, € S are acitve.

. ge . 81‘ 82‘ 83‘
CaSMV specification: SPEC EF &, css;
+ g
54

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 12

Implementation

Implemented as a tool:
e Input: SFC in IEC 61131-3 or Siemens syntax
e Output: CaSMV code and CTL specification

Output of CaSMV:
e OK — SFC is “safe”

e Error trace (helpful to locate the problem)

= requires only minimal interaction by the user

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs 13

Summary and Future Work

Summary
e The problem of “unsafe” and “unreachable” SFCs

e Algorithmic approach to check for “safe” SFCs:
o abstract CaSMV model

o tool-supported automatic verification

Future work
e Embed tool into PLC programming environments

e Combine with other automated verification approaches,

e.g., static analysis

CESA 2003 - July 9-11, 2003 Ben Lukoschus: A Model-Checking Approach to Safe SFCs

14

	Overview
	Sequential Function Charts (SFCs)
	Sequential Function Charts: Components
	Sequential Function Charts: Transition Types
	 ``Unsafe'' and ``unreachable'' SFCs
	 ``Safe'' SFCs
	Check for ``Safe'' SFCs $=$ Reachability Problem
	CaSMV model for SFCs: Variables
	CaSMV model for SFCs: Transitions
	Requirement 1: At most one token in a step
	Requirement 2: Closing parallel transitions
	Implementation
	Summary and Future Work

