
CESA 2003 · July 9–11, 2003

A Model-Checking Approach to Safe SFCs

Ralf Huuck

School of Computer Science & Engineering, University of New South Wales, Sydney, Australia

Ben Lukoschus

Department of Computer Science, University of Kiel, Germany

Nanette Bauer

BASF AG, Ludwigshafen, Germany

CESA 2003 · Lille, France · July 9–11, 2003

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 1

CESA 2003 · July 9–11, 2003

Overview

• Sequential Function Charts (SFCs)

• “Unsafe” and “unreachable” SFCs

• Definition of “safe” SFCs

• Algorithmic checking for “safe” SFCs:

◦ Execution model for SFCs

◦ Formal specification of “safe”

◦ Model checking

• Summary, future work

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 2

CESA 2003 · July 9–11, 2003

Sequential Function Charts (SFCs)

• Graphical programming language for PLCs

• Based on Petri nets and Grafcet

• Syntax and informal semantics defined in IEC 61131-3

• Concepts:

◦ Actions (embedding of other PLC languages)

◦ Parallelism

◦ Hierarchy

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 3

CESA 2003 · July 9–11, 2003

Sequential Function Charts: Components

s0
� step

� transition
g1

� guard

s2
S action1

N action2

� action block

XXXXy

action name
P

P
P

P
P

P
Pi

action qualifierg2

s3
R action1

g3

?

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 4

CESA 2003 · July 9–11, 2003

Sequential Function Charts: Transition Types

s1

g

s2

({s1}, g, {s2})

s1

g2g1 g3

s2 s3

({s1}, g1, {s2})

({s1}, g2, {s3})

({s1}, g3, {s4})

s4

s1

g

s2 s3

({s1}, g, {s2, s3, s4})

s4 s4

({s1, s2, s3}, g, {s4})

g

s1 s2 s3

s4

({s1, s2, s3}, g, {s4, s5})

s5

g

s1 s2 s3

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 5

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1 s3

s2 s4

s5

s0

s1

?

s3

s2 s4

s5

s0

s1 s3

s2 s4 s5

s6

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

t

s1 s3

s2 s4

s5

s0

s1

?

s3

s2 s4

s5

s0

s1 s3

s2 s4 s5

s6

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1

t

s3

t

s2 s4

s5

s0

s1

?

s3

s2 s4

s5

s0

s1 s3

s2 s4 s5

s6

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1 s3

t

s2 s4

t

s5

s0

s1

?

s3

s2 s4

s5

s0

s1 s3

s2 s4 s5

s6

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1 s3

t

s2 s4

t

s5

s0

s1

?

s3

s2 s4

s5

s0

s1 s3

s2 s4 s5

s6

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1 s3

t

s2 s4

t

s5

s0

t

s1

?

s3

t

s2 s4

t

s5

s0

s1 s3

s2

t

s4

t

s5

s6

IEC 61131-3 calls these SFCs “unsafe”/“unreachable” . . .

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Unsafe” and “unreachable” SFCs

s0

s1 s3

t

s2 s4

t

s5

s0

t

s1

?

s3

t

s2 s4

t

s5

s0

s1 s3

s2

t

s4

t

s5

s6

IEC 61131-3 calls these SFCs “unsafe”/“unreachable” . . .

But construction still possible in many programming environments!

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 6

CESA 2003 · July 9–11, 2003

“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):

• no jumps between parallel branches

• no jumps out of parallel branches

• every opening parallel branch is closed correctly

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 7

CESA 2003 · July 9–11, 2003

“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):

• no jumps between parallel branches

• no jumps out of parallel branches

• every opening parallel branch is closed correctly

Formal (Petri net execution model):

• In each execution there is at most one token in each step.

• For every closing parallel transition there is an execution that

uses this transition.

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 7

CESA 2003 · July 9–11, 2003

Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 8

CESA 2003 · July 9–11, 2003

Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.

⇒ Checking by model checking (Cadence SMV):

• Abstraction of SFCs

• Modelling of SFC executions in CaSMV

• Definition of “safe” in CaSMV

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 8

CESA 2003 · July 9–11, 2003

CaSMV model for SFCs: Variables

Abstraction of the token flow:

• no program variables

• no actions

• guards are replaced by unconstrained Boolean variables

• one Boolean variable si for each step

(si = true: step si has a token)

State changes of the variables:

• discrete transition system

• relation “next” between old and new values

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 9

CESA 2003 · July 9–11, 2003

CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 10

CESA 2003 · July 9–11, 2003

CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)

Step si will be entered in the next cycle:
sj

s

g g
′

si sk

si will be entered ≡

(∃t = (S, g, T) ∈ Tr : si ∈ T ∧ next(g) ∧
∧

sj∈S

sj

∧ ∀t′ = (S, g′, T ′) ∈ Tr \ {t} : next(g′) ⇒
∧

sk∈T ′\T

¬next(sk))

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 10

CESA 2003 · July 9–11, 2003

CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)

Step si will be entered in the next cycle:
sj

s

g g
′

si sk

si will be entered ≡

(∃t = (S, g, T) ∈ Tr : si ∈ T ∧ next(g) ∧
∧

sj∈S

sj

∧ ∀t′ = (S, g′, T ′) ∈ Tr \ {t} : next(g′) ⇒
∧

sk∈T ′\T

¬next(sk))

Step si will not be left in the next cycle:

si will not be left ≡ ¬∃(S, g, T) ∈ Tr : si ∈ S ∧ next(g)∧
∧

sj∈S

sj

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 10

CESA 2003 · July 9–11, 2003

Requirement 1: At most one token in a step

More than one token in a step:

next(token overflow) ≡
∨

si∈St

(

(si ∧
∨

(S,g,T)∈Tr

S 6=T

(si ∈ T ∧ next(g) ∧
∧

sj∈S

sj))

∨ (
∨

(S1,g1,T1)∈Tr

(S2,g2,T2)∈Tr

S1∩S2=∅

(si ∈ T1 ∩ T2

∧ next(g1) ∧ next(g2)

∧
∧

sj∈S1∪S2

sj)))

sj
s

g

si
s

s1

s

g1

s2

s

g2

si

CaSMV specification: SPEC AG !token_overflow

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 11

CESA 2003 · July 9–11, 2003

Requirement 2: Closing parallel transitions

We show for each transition (S, g, T) ∈ Tr with |S| > 1:

There exists an execution in which all si ∈ S are acitve.

s4

g

s1

s
s2

s
s3

s

CaSMV specification: SPEC EF &si∈Ssi

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 12

CESA 2003 · July 9–11, 2003

Implementation

Implemented as a tool:

• Input: SFC in IEC 61131-3 or Siemens syntax

• Output: CaSMV code and CTL specification

Output of CaSMV:

• OK – SFC is “safe”

• Error trace (helpful to locate the problem)

⇒ requires only minimal interaction by the user

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 13

CESA 2003 · July 9–11, 2003

Summary and Future Work

Summary

• The problem of “unsafe” and “unreachable” SFCs

• Algorithmic approach to check for “safe” SFCs:

◦ abstract CaSMV model

◦ tool-supported automatic verification

Future work

• Embed tool into PLC programming environments

• Combine with other automated verification approaches,

e.g., static analysis

Ben Lukoschus: A Model-Checking Approach to Safe SFCs 14

	Overview
	Sequential Function Charts (SFCs)
	Sequential Function Charts: Components
	Sequential Function Charts: Transition Types
	 ``Unsafe'' and ``unreachable'' SFCs
	 ``Safe'' SFCs
	Check for ``Safe'' SFCs $=$ Reachability Problem
	CaSMV model for SFCs: Variables
	CaSMV model for SFCs: Transitions
	Requirement 1: At most one token in a step
	Requirement 2: Closing parallel transitions
	Implementation
	Summary and Future Work

