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Overview

• Sequential Function Charts (SFCs)

• “Unsafe” and “unreachable” SFCs

• Definition of “safe” SFCs

• Algorithmic checking for “safe” SFCs:

◦ Execution model for SFCs

◦ Formal specification of “safe”

◦ Model checking

• Summary, future work
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Sequential Function Charts (SFCs)

• Graphical programming language for PLCs

• Based on Petri nets and Grafcet

• Syntax and informal semantics defined in IEC 61131-3

• Concepts:

◦ Actions (embedding of other PLC languages)

◦ Parallelism

◦ Hierarchy
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Sequential Function Charts: Components
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Sequential Function Charts: Transition Types
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“Unsafe” and “unreachable” SFCs
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“Unsafe” and “unreachable” SFCs
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“Unsafe” and “unreachable” SFCs
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“Unsafe” and “unreachable” SFCs
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“Unsafe” and “unreachable” SFCs
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“Unsafe” and “unreachable” SFCs
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IEC 61131-3 calls these SFCs “unsafe”/“unreachable” . . .
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“Unsafe” and “unreachable” SFCs
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IEC 61131-3 calls these SFCs “unsafe”/“unreachable” . . .

But construction still possible in many programming environments!
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“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):

• no jumps between parallel branches

• no jumps out of parallel branches

• every opening parallel branch is closed correctly
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“Safe” SFCs

“Safe” = absence of “unsafe” and “unreachable”

Informal (graphical):

• no jumps between parallel branches

• no jumps out of parallel branches

• every opening parallel branch is closed correctly

Formal (Petri net execution model):

• In each execution there is at most one token in each step.

• For every closing parallel transition there is an execution that

uses this transition.
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Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.
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Check for “Safe” SFCs = Reachability Problem

“Safe” as reachability:

1. No state can be reached in which more than one token can

enter a step.

2. For every closing parallel transition a state is reachable in

which this transition can be used.

⇒ Checking by model checking (Cadence SMV):

• Abstraction of SFCs

• Modelling of SFC executions in CaSMV

• Definition of “safe” in CaSMV
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CaSMV model for SFCs: Variables

Abstraction of the token flow:

• no program variables

• no actions

• guards are replaced by unconstrained Boolean variables

• one Boolean variable si for each step

(si = true: step si has a token)

State changes of the variables:

• discrete transition system

• relation “next” between old and new values
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CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)
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CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)

Step si will be entered in the next cycle:
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CaSMV model for SFCs: Transitions

Activity of step si in the next cycle:

next(si) ≡ si will be entered ∨ (si ∧ si will not be left)

Step si will be entered in the next cycle:
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∧ ∀t′ = (S, g′, T ′) ∈ Tr \ {t} : next(g′) ⇒
∧

sk∈T ′\T
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Step si will not be left in the next cycle:

si will not be left ≡ ¬∃(S, g, T ) ∈ Tr : si ∈ S ∧ next(g)∧
∧
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Requirement 1: At most one token in a step

More than one token in a step:

next(token overflow) ≡
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CaSMV specification: SPEC AG !token_overflow
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Requirement 2: Closing parallel transitions

We show for each transition (S, g, T ) ∈ Tr with |S| > 1:

There exists an execution in which all si ∈ S are acitve.
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CaSMV specification: SPEC EF &si∈Ssi
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Implementation

Implemented as a tool:

• Input: SFC in IEC 61131-3 or Siemens syntax

• Output: CaSMV code and CTL specification

Output of CaSMV:

• OK – SFC is “safe”

• Error trace (helpful to locate the problem)

⇒ requires only minimal interaction by the user
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Summary and Future Work

Summary

• The problem of “unsafe” and “unreachable” SFCs

• Algorithmic approach to check for “safe” SFCs:

◦ abstract CaSMV model

◦ tool-supported automatic verification

Future work

• Embed tool into PLC programming environments

• Combine with other automated verification approaches,

e.g., static analysis
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