
A Model-Checking Approach to Safe SFCs
Ralf Huuck

Department of Computer Science
University of Kiel, Germany

Email: rhu@informatik.uni-kiel.de

Ben Lukoschus
Department of Computer Science

University of Kiel, Germany
Email: bls@informatik.uni-kiel.de

Nanette Bauer
Department of Chemical Engineering

University of Dortmund, Germany
Now with BASF AG, Ludwigshafen, Germany

CESA 2003: IMACS Multiconference on Computational Engineering in Systems Applications, Lille, France, July 9–11, 2003

Abstract— Sequential function charts (SFC) are a high-level
graphical programming language for programmable logic con-
trollers. Their main purpose is to provide a structure and
organization of the control flow. Therefore, various features such
as parallelism, priorities on branching transitions, and activity
manipulations are incorporated. The syntactic rules for building
SFCs are formally defined in IEC 61131-3. It is, however, still
possible to derive SFCs from these rules whose structure do
not make sense. In this work we give a characterization for so-
called safe SFCs. Moreover, we present a semantic definition for
them, as well as an algorithmic approach to automatically detect
whether an SFC is safe or not.

I. I NTRODUCTION

Computers penetrate nearly every area of our daily life.
They control telephone systems, automated teller machines,
cars, etc. Everything is computer driven or at least supported
by computers. But a major part of the computer systems we
never see. All the things natural to us like water, food, and
electricity rely on computers as far as their distribution and
manufacturing process is concerned.

Wherever we get in touch, directly or indirectly, with
computers and computer driven hardware, their main purpose
is: control. The control of the traction of the car wheels,
of restricted access, the scheduling and transport along the
assembly lines for food packaging, and the control of many
safety-critical applications such as fission control in nuclear
power plants.

The systems responsible for control are mostly not general-
purpose PCs but specific industrial computers. The reasons
are simple and stem from the requirements of such control
systems: they have to be robust, reliable and cheap. Robustness
to ensure that these systems also work under hazardous
conditions, which might be heat, dust, and electro-magnetic
noise [1]. Reliability in order to have them running 24 hoursa
day over 5 or even 10 years. And they have to be cheap to enter
a mass market and to reduce the costs of the manufacturing
process.

Next to micro-controllers, specific purpose computers on a
single chip, a prominent class of industrial controllers are so
calledprogrammable logic controllers(PLC). First developed
during the early 1970s, PLCs started as simple devices to
replace electro-mechanical relays. Using integrated circuit
technology, they performed simple sequential control tasks, in
isolation from other control and monitoring equipment. These
simple devices have grown into complex systems capable
of almost any type of control application, including motion

control, data manipulation, and advanced computing functions.
Nowadays, PLCs are extensively used in the field of automa-
tion, and they are integrated into much larger environments,
requiring communication with other controllers or computer
equipment for plant management functions [2], [3].

Control systems driven by PLCs are often complex, safety
critical, and involve a lot of money. Any failure of these
systems might not only result in a significant financial loss
but can lead to casualties as well. Hence, next to robustness
and reliability, their actual programming and the correctness
of the programs plays a vital role.

There exist different programming languages for PLCs.
These have been designed with an emphasis on control tasks,
each intended for a specific application domain, and based
on the background of the control engineers who use them.
The standard IEC 61131-3 was developed to achieve more
conformity of the different PLC programming languages.

One of the languages defined in this standard is called
Sequential Function Charts (SFCs).This is a graphical, high-
level programming language which aims at providing a clear
understanding of the possibly interwoven program parts. SFCs
allow to decompose and structure program parts and include
interesting concepts such as parallelism, activity manipulation
and hierarchy.

The standard provides formal rules for building SFCs, i.e.,
there is a well-defined syntactic framework. However, not
every SFC built according to these rules makes sense. The
structure of an SFC may yield that the SFC is “unsafe”
or “unreachable”, which are notions defined in the standard.
Such SFC structures are declared as erroneous. The standard,
however, provides neither means to detect such structures nor
any precise characterization of this phenomenon.

In this work we pinpoint the characteristics for such erro-
neous structures and, moreover, provide means to detect them.
This detection is based an on algorithmic approach and as such
can take place fully automatically.

The remainder of this work is organized as follows: In
Section II we present a brief introduction to SFCs, followed
by a characterization and formal definition of safe SFCs in
Section III. The subsequent Section IV introduces simple
SFCs, an abstraction of SFCs which is sufficient for a de-
cision procedure for safe SFCs. In Section V we define an
algorithmic approach to check for safe SFCs. This decision
procedure relies on model checking simple SFCs for particular
requirements. Therefore, this section includes a translation

1

from simple SFCs to the input language of a model checker,
as well as the automatic generation of the according safety re-
quirements. All this is illustrated by an example in SectionVI.
The conclusions and future work are discussed in Section VII.

II. SEQUENTIAL FUNCTION CHARTS

Sequential function charts are defined in [4] as elements
of a graphical programming and structuring language for
programmable logic controllers. The SFC definitions in the
standard IEC 61131-3 are based on IEC 60848 [5], which
defines the specification language Grafcet. Grafcet in turn is
strongly related to Petri nets [6].

Basically, SFCs are transition systems consisting ofsteps
(the locations) andtransitions. For every SFC there exists
exactly one initial step. Every transition is labeled by an
associated transition condition, calledguard. Moreover, one
or moreactionsmay be associated to each step. Actions are
programs in one of the programming languages proposed by
the standard. Since the actions associated to steps can be SFCs
themselves, a concept of hierarchy is provided. An example
of an SFC is depicted in Fig. 1.

g2

guard

initial
step

step

transition g1

g3

N

action qualifier
action
name

action
blocka1

P1 a2
N a3

Fig. 1. Elements of SFCs

The action blocksshown in Fig. 1 are a graphical means
to associate actions to steps. An action block consists of an
action qualifier,which can be used to specify the duration of
the respective action (e.g., permanent or limited in time),and
theaction name,which identifies the program that is run when
the action is active.

An SFC does not necessarily have to be a single sequence
of steps and transitions. For SFCs we can identify a number
of different transition types (cf. Fig. 2):

• simple transitionsbetween two steps as denoted in (1),
• alternative branching, i.e., the choice between several

transitions as in (2),
• divergenceas in (3), i.e., a parallel branching from one

step into a set of parallel steps, and
• convergence(4) which denotes a synchronization of sev-

eral parallel steps into a single step.

Furthermore, direct combinations of both convergence and
divergence as depicted in (5) are allowed. Moreover, the
standard refers to transitions like the one guarded byg3 in
Fig. 1 as loops. From our point of view loops as well as
alternative branching belong to the same class, namely (sets of)

s1

g1

s2

(1)

s3

g3g2 g4

s4 s5

(2)

s6

s7

g5

s8 s9

(3)

s10

s14

(4)

g6

s11 s12 s13

s18

(5)

s19

g7

s15 s16 s17

Fig. 2. Basic transition types

simple transitions. Also note that any transition drawn without
an arrowhead is understood as going from top to bottom.

An additional feature of SFCs is to explicitly assign transi-
tion priorities to alternative branches. When firing transitions
the one which has the highest priority among the enabled ones
will be taken.

An SFC, like any PLC program, operates in a cyclic mode.
At the beginning of each cycle, inputs are read from the
environment (e.g., sensor readings) and stored in variables.
Then all programs associated with active actions are executed,
resulting in a computation that changes some variables. After
that, all guards on transitions starting at active steps are
evaluated, and the enabled transitions are taken, changingthe
set of active steps. At the end of the cycle, outputs (which
usually depend on the previous computation) are sent to the
environment. Then the next cycle starts. A full SFC semantics
for a comprehensive class of SFCs can be found in [7].

The basic transition types shown in Fig. 2 can be combined
into more complex transition structures like those shown in
Fig. 1 and Fig. 3. However, there are various combinations
which do not seem to make sense, e.g., in the SFC shown
in Fig. 3. There we have the transition froms4 to s1 which
jumps out of a parallel branch, the transition froms2 to s5,
which jumps from one simultaneous branch to another, and
the transition froms5 and s6 to s7, which is a convergence
of simultaneous sequences of two steps which are part of an
alternative branching starting in steps3.

Although the standard forbids to use such ill-structured
SFCs (which are called “unsafe” or “unreachable”, see Sec-
tion 2.6.5 of [4]), it does not give a precise characterization
of this phenomenon. In the following we define the notion
of safe SFCswhich subsumes the absence of “unsafe” and
“unreachable” structures and give a semantic characterization.
Moreover, we define an algorithmic approach to determine
automatically for any given SFC if it is safe or not.

2

s1

g1

s2

g2

s3 s4

g3

?

g4 g5

s5 s6

g6

s7

Fig. 3. “Unsafe” SFC

III. SAFE SFCS

The structure of the SFC depicted in Fig. 3 complies to the
syntax as given in IEC 61131-3. The SFC as such, however,
does not make sense. We like to stress that this observation
does not depend on the semantics of the given guards or any
possible associated actions. It is a structural problem in the
first place.

We characterize what kind of constructions do not make any
sense. Any SFC without a divergence/convergence is always
sensible as long as the syntactic rules are followed. However,
if we allow parallelism there are three major violations that
might occur (cf. Fig. 4):

1) There is a jump between different parallel branches
without a proper synchronization first (SFC a). This
violates a proper parallel structure.

2) There is a jump out of a parallel branch, probably into a
different parallel branch (SFC b). This violates a proper
synchronization.

3) Two or more alternative branches of the same parallel
branch are synchronized (SFC c). This does not make
sense either.

This leads to the following characterization:

Characterization 1 (Safe SFC)
An SFC issafe if and only if there are no jumps between
parallel branches, no jumps out of parallel branches, and
every branch is properly synchronized.

Although we have characterized safe SFCs by the above def-
inition, we have not yet explored the semantic consequences.
This is done next.

The first two items of the characterization above describe a
breach of proper parallelism. Let us consider parallel branches
as independentprocesses:Whenever a diverging transition is
taken, in each of the target steps a process is started, and
it is terminated when the respective converging transitionis

s0

s1 s3

s2 s4

s5

(a)

s0

s1

?

s3

s2 s4

s5

(b)

s0

s1 s3

s2 s4 s5

s6

(c)

Fig. 4. Various types of “unsafe” and “unreachable” SFCs

taken. We clearly want control not to jump from one process
to another when in fact we demand a proper synchronization.

Semantically, this means that control might reside simulta-
neously at different places in the same process. To understand
this, imagine the following scenario in Fig. 4 (a): Control starts
from steps0 and moves on tos1 and s3. While in the right
branch control remains ins3 it moves from the left ins1 to
the right ins4. Now, control resides in two steps in the same
process, i.e., ins3 and s4. In SFC (b) we can construct a
similar scenario with the same result.

If we consider control astokens(as in a Petri net setting)
moving around according to the SFC transition structure, we
can phrase one condition for a safe SFC as follows: There is
never more than one token simultaneously in the same process.
If we completely abstract an SFC from guards and actions and
allow control to reside in a location for an arbitrary number
of cycles, we can rephrase the condition as: Determine that
no step ever has more than one token. The abstraction to
SFCs without guards where control may reside in a step for an
arbitrary time is a sensible abstraction, since we want to verify
structural properties that do not depend on specific guards and
actions.

The issue of proper synchronization is slightly different.
The SFC (c) in Fig. 4 is not “unsafe”, since control cannot
simultaneously reside in two processes. But it is “unreach-
able”, since there are not enough tokens for the convergence,
which is of course due to the alternative branching. Hence,
the second requirement is that there has to be a possibility
to simultaneously reach all source steps of any converging
transition. Again it is useful to consider SFCs abstracted from
any guards and actions.

Now we can formally define our requirements.

Definition 1 (Safe SFC)
An SFC issafe iff

1) for all possible executions there is at most one token in
a process and

2) for any converging transition there exists an execution
such that the transition can be taken.

3

Both requirements can be stated as reachability problems
over finite graphs and, hence, are solvable by model check-
ing. In the following we describe a simple model-checking
framework for SFCs where the respective requirements can
be checked automatically.

IV. A S IMPLIFIED FORMAL MODEL

In order to model-check SFCs, we first give a formal SFC
model. It serves as a basis for the latter translation into
the input language of a model checker. Since we are only
interested in structural properties of SFCs, there is no need to
define SFCs with their full set of features. In particular, we
are only interested in the overall SFC structure, i.e., the steps
and transitions. We call such a reduced model aSimple SFC.
We define the syntax for a Simple SFC as follows:

Definition 2 (Simple SFC)
A Simple SFC consists of a tripleS = (S, s0, T), where

• S is a finite set of steps,
• s0 ∈ S is the initial step, and
• T ⊆ (2S \ {∅})× G × (2S \ {∅}) is a set of transitions,

each transition labeled with a guardg from a setG of
transition conditions.

For every transition(Ss, g, St) ∈ T the set Ss is the
non-empty set of source steps andSt the non-empty set of
target steps. For simple transitions both sets are singletons.
Alternative branching is modeled through a set of simple
transitions, i.e., several transitions from the same source step
to different target steps. For divergence transitions the set of
target stepsSt is a non-singleton set and for convergence
Ss is a non-singleton set. Note that this simple model does
not include priorities, actions and hierarchy. It is, however,
sufficient for deciding safe SFCs, since they do not depend on
possible priorities or the semantics of actions. Hierarchical
SFCs can be checked compositionally, i.e., each SFC is
checked independently and, as such, they can be modeled
independently.

Briefly, the evolution of a Simple SFC is defined as follows:
Control starts in the initial step. Whenever a guardg evaluates
to true and control resides in all source steps the respective
transition, it moves on to all target steps of that transitions.

V. M ODEL CHECKING FORSAFE SFCS

Model checking [8], [9] is a formal verification technique
based on an automatic, exhaustive enumeration of all possible
behaviors of a system. Provided we have a formal execution
modelM of a system (the operational semantics for SFCs in
our case) and some propertyϕ (we are interested in checking
Definition 1 for a given SFC), a model checker can be used
to compute the validity ofϕ in M , often stated asM |= ϕ.

In the following we define a translation from Simple SFCs
to the input language of a model checker in order to check for
safe SFCs, i.e., compliance with Definition 1. Although any
general-purpose model checker can be used for this task, we
define the translation and verification process for theCadence
SMV (CaSMV)model checker [10].

A. Translation of Simple SFCs to CaSMV Models

CaSMV is a symbolic model checker which supports the
verification of temporal logic properties of Kripke structures
[11]. The transition relation of a Kripke structure is expressed
in CaSMV by evaluation rules depending on the current and
the next state of each system variableq, written asq and
next(q) in CaSMV notation. In order to translate a Simple
SFC S = (S, s0, T) to CaSMV we mimic the transition
relation as given by the Simple SFCs. Therefore, we introduce
the following Boolean variables in our CaSMV model ofS:

• s i for eachsi ∈ S, i.e., one variable for each step of the
SFC. These variables model whether there is a token in
this step, i.e., control resides in it. Initially,s0 = true,
and for all i 6= 0, s i = false .

• gi for eachgi. This variable istrue whenever its asso-
ciated transition condition evaluates totrue. We do not
put any restrictions on the initial value and the changes of
anygi, and thus over-approximate the real SFC behavior,
in which the evaluation of a guard usually depends on
variables not contained in our CaSMV model.

We map the transition relation of a Simple SFC to CaSMV
by explicitly defining thenext -state of all step variables, i.e.,
we define how state changes evolve over time.

The next -state of a step variables i of a stepsi has to
be true, i.e., there is a token in it, if and only if there is a
transition taken intosi in the next -state or it is alreadytrue

now and there is no transition taken that leavessi. To put it
simple, if a token is moved tosi the step variables i becomes
true and it remainstrue until the token is moved away from
si.

Formally this can be expressed by:

next(s i) ≡
s i will be entered∨ (s i ∧ s i will not be left).

If si is entered depends on two conditions. First, there has
to be a transitiont that is enabled in the next cycle and that
containssi in its target set. Second, any other transitiont′ with
the same source set is not taken. The second part is necessary
to cope with alternative branches when several guards aretrue

at the same time. E.g., when taking a transition leavings3 in
Fig. 2, at most one ofs4, s5, s6 can be active in the next
cycle.

s i will be entered≡

(∃t = (A, g, B) ∈ T : si ∈ B ∧ next(g) ∧
∧

sj∈A

s j)

∧ (∀t′ = (A, g′, B′) ∈ T \ {t} :

next(g ′) ⇒
∧

sj∈B′\B

¬next(s j))

If si already has a token,s i remainstrue if no transition
havingsi in its source set is enabled:

s i will not be left ≡

¬∃(A, g, B) ∈ T : si ∈ A ∧ next(g) ∧
∧

sj∈A

s j

4

Generally, the evolution of the guards have to be specified
according to the information they reason about, e.g., input
variables which correspond to a PLC’s sensor data. In our
setting, however, the structural properties are independent of
any specific guards. Thus, we chose one distinct Boolean
variable for each guard at each transition and leave this
variable unspecified. As a result the guards evolve non-
deterministically, which just reflects all arbitrary behaviors
independent of specific semantic issues.

B. Generating Verification Conditions

Having defined a translation from Simple SFCs to the input
language of the model checker, it remains to translate the
requirements for safe SFCs, as given in Definition 1, into
verification conditions. This is done separately for each ofthe
two requirements.

1) At most one token in a process:In order to check that
there is never more than one token in a process, it suffices, due
to the non-determinism, to check that there is never more than
one token in a step. For technical reasons we distinguish two
cases where such a situation can arise: Firstly, if a token resides
in a step and another token moves into this step and, secondly,
if there are two tokens from different transitions moving into
the same target step.

In preparation to check that there might be more than
one token in a step at a time we introduce an additional
variable token overflow to indicate just this. We define
token overflow such that it is set totrue whenever there
is a token in a step that can be entered by another transition
or there are two transitions that can enter the same step
simultaneously. Initially, the variable is set tofalse.

Formally, the evolution oftoken overflow checks the
two conditions above for all stepssi ∈ S:

next(token overflow) ≡
∨

si∈S

(

(s i ∧
∨

(A,g,B)∈T∧A 6=B

(si ∈ B ∧ next(g) ∧
∧

sj∈A

s j))

∨ (
∨

(A1,g1,B1)∈T∧(A2,g2,B2)∈T∧A1∩A2=∅

(si ∈ B1 ∩ B2 ∧

next(g1) ∧ next(g2) ∧
∧

sj∈A1∪A2

s j))
)

The first condition states that we have a possible token
overflow in si wheneversi and all source steps of an enabled
transition leading tosi have a token. The reason is, in the next
cycle the tokens from the source step might move tosi, while
the token insi can remain insi due to the non-deterministic
guards. This results into more than one token insi. Note that
we needA 6= B to exclude self-loops from the test above,
since the occurrence of a token leaving and entering the same
step simultaneously is not considered to be an error.

The second condition checks if there are two transitions with
different source steps (A1∩A2 = ∅) havingsi is in both their
target sets. If in the next cycle both transitions are enabled,
then both tokens can move into the same stepsi.

Having defined this, the verification condition for the re-
quirement that there is at most one token in a process boils
down to the requirement that there is no token overflow. Stated
as a temporal logic formula in CaSMV syntax:

SPEC AG !token overflow.

This means that inall executions atany time a token overflow
does not occur.

2) Proper synchronization:The verification property for
proper synchronization is slightly different. We have to check
for every converging transition(A, g, B) ∈ T with |A| > 1
that there is a least one execution in which at some point all
steps inA have a token. We defineTc as set of all converging
transitions:

Tc = {(A, g, B) ∈ T | |A| > 1} .

We require for all(A, g, B) ∈ Tc:

SPEC EF &si∈As i .

This means for all converging transitions that eventually there
is a token in all source steps. Note, however, that this needs
not to be the case for the concrete SFC. Here, we abstract from
any restrictions imposed by guards etc. and, therefore, over-
approximate the behavior to test for the structural compliance.

The whole translation process as well as the generation of
the verification conditions and their checking can be done fully
automatic. This means, there is no user interaction required in
testing for safe SFCs.

C. Reduction of Model Size

One disadvantage of the previous translation and verification
process is that we explicitly model each transition condition by
a Boolean variable. However, the verification is independent
of these conditions, i.e., we do the check for every possible
combination of guard evaluations. If it is possible to perform
the same checks without using a variable for each guard, we
can reduce the potential state space of the model significantly.
Such an approach is introduced next.

We suggest the following: We substitute in the translation
process every guard by the constanttrue. This allows control
to move freely through the SFC. However, this alone is not
sufficient. By the synchronous execution mechanism in each
cycle every enabled transition has to be taken. This means in
particular, if all guards evaluate totrue control has to move
out of a step in every cycle (if possible). However, we like the
control to behave arbitrarily, in particular it should be possible
to remain in a step.

Therefore, we rephrase our definitions for the transition
relation in such a way that guard variables are no longer
used in the CaSMV model. Instead of using guard variables
to determine if a transition is taken, we use the existence of
token in its source or target steps after the transition.

next(s i) ≡
s i will be entered′ ∨ (s i ∧ s i will not be left′)

5

where

s i will be entered′ ≡
(∃t = (A, g, B) ∈ T :

si ∈ B ∧
∧

sj∈A

sj ∧
∧

sk∈A\B

¬next(s k))

∧ (∀t′ = (A, g′, B′) ∈ T \ {t} :
∧

sj∈B′\B

¬next(s j))

and

s i will not be left′ ≡

¬∃(A, g, B) ∈ T : si ∈ A ∧
∧

sj∈A

s j ∧
∧

sk∈B

next(s k)

We also remove guard variables from the definition of
token overflow :

next(token overflow) ≡
∨

si∈S

(

(s i ∧
∨

(A,g,B)∈T∧A 6=B

(si ∈ B ∧
∧

sj∈A

s j))

∨ (
∨

(A1,g1,B1)∈T∧(A2,g2,B2)∈T∧A1∩A2=∅

(si ∈ B1 ∩ B2 ∧

∧
∧

sj∈A1∪A2

s j))
)

Here it is sufficient just to remove all guard variables (more
precise: replace them withtrue), since whenever the variable
token overflow becomestrue in the old definition, the
guard variables occurring in the formula aretrue anyway.

VI. EXAMPLE

Let us consider the SFC of Fig. 3. The transition relation in
CaSMV as defined in Section V-C is given in Fig. 5. As you
can observe, a stepsi obtains a token, i.e., becomestrue (1 in
CaSMV), if there is a token in the source step of a transition
to si which is removed in the next cycle and is not moved to
some other step thansi. A token is removed from a stepsi

(si is set to0), if there is a transitiont leavingsi such that all
source steps oft have tokens now and all target steps in the
next cycle. Not shown in this figure is that initially all steps
but the initial steps1 arefalse, i.e., there is only one token in
the initial step.

The CaSMV code for thetoken overflow variable
according to the definition in Section V-C is presented in
Fig. 6. It shows that thetoken overflow variable is set to
true whenever there is a token in a step and another transition
into this step or if there are two steps with a token which have
the same target step.

The verification conditions are shown in Fig. 7. They state
that there should be no token overflow and the transition
involving s5 ands6 have to properly synchronize.

The first verification condition, however, is violated. Hence,
the SFC is not safe. Moreover, a counter example is produced
by the model checker that helps to improve the structure such
that the SFC becomes safe. Note that the second verification
condition only holds because of the additional unsafe structure

default next(s1) := s1;
in case{

s4 & ˜next(s4) :=1;
s1 & next(s2) & next(s3) & next(s4) :=0;}

default next(s2) := s2;
in case{

s1 & ˜next(s1) :=1;
s2 & next(s5) :=0;}

default next(s3) := s3;
in case{

s1 & ˜next(s1) :=1;
s3 & (next(s5) | next(s6)) :=0;}

default next(s4) := s4;
in case{

s1 & ˜next(s1) :=1;
s4 & next(s1) :=0;}

default next(s5) := s5;
in case{

s2 & ˜next(s2) :=1;
s3 & ˜next(s3) & ˜next(s6) :=1;
s5 & s6 & next(s7) :=0;}

default next(s6) := s6;
in case{

s3 & ˜next(s3) & ˜next(s5) :=1;
s5 & s6 & next(s7) :=0;}

default next(s7) := s7;
in case{

s5 & s6 & ˜next(s5) & ˜next(s6) :=1;}

Fig. 5. SMV code for SFC of Fig. 3

default next(token_overflow) := 0;
in case{

s1 & s4 :=1;
s2 & s1 :=1;
s3 & s1 :=1;
s4 & s1 :=1;
s5 & (s2 | s3) :=1;

˜s5 & (s2 & s3) :=1;
s6 & s3 :=1;
s7 & (s5 & s6) :=1;}

Fig. 6. SMV code for token overflow

(* SPEC token overflow *)
SPEC AG ! token_overflow

(* SPEC proper synchronization *)
SPEC EF (s5 & s6)

Fig. 7. SMV code for verification conditions

producing more tokens then allowed. If the sequential branches
from s2 and s3 do not overlap anymore, the synchronization
fails as well.

The counter examples delivered by the model checker show
the evolution of the tokens from the initial state (one tokenin
the initial step) up to the point of failure. This information
does not show directly which parts of the structure make the
SFC “unsafe” or “unreachable”, but helps to trace the problem.

Since our model of Simple SFCs focuses on the structure

6

and abstracts away from data and actions, the complexity of
the resulting SMV model is relatively small. The computation
times of the model checker stay within a few seconds, even
for large SFCs.

VII. C ONCLUSIONS

This is the first work that presents an approach to determine
safe SFCs. A characterization of this phenomenon, as well
as a semantic definition is given. Moreover, an algorithmic
solution was developed that allows to check for safe SFCs
automatically.

There are several existing approaches to the verification
of SFCs [12], [13], [14]. However, none of them is tailored
to automatically determine safe SFCs. The advantage of our
tailored approach in contrast to a general verification approach
is that checking for safe SFCs does not require any user
interaction at all. Hence, it can easily be embedded in analysis
and design tools and serve as a back-end for automatic checks.

An optimal symbiosis of these two verification approaches
might look like this: A PLC programming environment, which
usually provides means for the design and programming of
SFCs as well as simulation capabilities, is extended with
both verification approaches. The checking for safe SFCs is
started automatically before any compilation or simulation of
an SFC, along with the usual consistency checks, e.g., type
checking. Counter examples found during model checking can
be visualized in the simulator, helping to find the structural
error. Since the general verification approach requires theuser
to provide formal specifications which are to be checked, it is
only started on request by a user with knowledge in formal
methods.

ACKNOWLEDGMENT

This work was supported by the German Research Council
within the DFG Priority Programme “Integration of Software

Specification Techniques for Applications in Engineering”
under grants RO 1122/10-2 and EN 152/32-2.

REFERENCES

[1] D. Morley, “The history of the PLC,” http://www.barn.org/FILES/
historyofplc.html.

[2] R. Lewis, Programming industrial control systems using IEC 1131-
3, revised ed., ser. Control Engineering Series. Stevenage,United
Kingdom: The Institution of Electrical Engineers, 1998, vol. 50.

[3] F. Bonfatti, P. Monari, and U. Sampieri,IEC 1131-3 Programming
Methodology, 1st ed. Fontaine, France: CJ International, 1999.

[4] Programmable Controllers – Programming Languages, IEC 61131-3,
2nd ed., International Electrotechnical Commission, Technical Commit-
tee No. 65, Nov. 1998, committee draft.

[5] IEC 60848, Preparation of function charts for control systems, Inter-
national Electrotechnical Commission, Technical Committee No. 848,
1992.

[6] R. David and H. Alla,Petri Nets & Grafcet. Prentice Hall, 1992.
[7] N. Bauer and R. Huuck, “A parameterized semantics for sequential

function charts,” inWorkshop of Semantic Foundations of Engineering
Design Languages (SFEDL), April 2002, satellite event of ETAPS 2002.

[8] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons for branching time temporal logic,” inLogics of Programs
Workshop, IBM Watson Research Center, Yorktown Heights, New York,
May 1981, ser. LNCS, D. Kozen, Ed., vol. 131. Springer-Verlag, 1982,
pp. 52–71.

[9] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” inProceedings of the 5th International Symposium
on Programming, Turin, April 6–8, 1982, M. Dezani-Ciancaglini and
U. Montanari, Eds. Springer-Verlag, 1982, pp. 337–350.

[10] R. Jhala and K. L. McMillan, “Microarchitecture verification by com-
positional model checking,” inComputer Aided Verification 13th Inter-
national Conference, CAV 2001, ser. LNCS, G. Berry and H. Comon,
Eds., vol. 2102, 2001, pp. 396–410.

[11] S. A. Kripke, “Semantical considerations on modal logic,” Acta Philo-
sophica Fennica, vol. 16, pp. 83–94, 1963.

[12] D. L’Her, P. L. Parc, and L. Marcé, “Proving sequentialfunction chart
programs using automata,” inProceedings of 2nd AMAST workshop on
Real-Time Systems, 1995.

[13] S. Lampérière-Couffin and J.-J. Lesage, “Formal verification of the
sequential part of PLC programs,” inWODES 2000: 5th Workshop on
Discrete Event Systems, Ghent, Belgium, August 21–23, 2000, 2000.

[14] N. Bauer and R. Huuck, “Towards automatic verification of embedded
control software,” inAsian Pacific Conference on Quality Software, ser.
IEEE, December 2001.

7

