CESA 2003: IMACS Multiconference on Computational Engiireg in Systems Applications, Lille, France, July 9-11, 200

A Model-Checking Approach to Safe SFCs

Ralf Huuck Ben Lukoschus Nanette Bauer
Department of Computer ScienceDepartment of Computer Science Department of Chemical Engineering
University of Kiel, Germany University of Kiel, Germany University of Dortmund, Germany

Email: rhu@informatik.uni-kiel.de Email: bls@informatik.uni-kiel.de Now with BASF AG, Ludwigshafen, Germany

Abstract— Sequential function charts (SFC) are a high-level control, data manipulation, and advanced computing fonsti
graphical programming language for programmable logic cor Nowadays, PLCs are extensively used in the field of automa-
trollers. Their main purpose is to provide a structure and o, and they are integrated into much larger environments

organization of the control flow. Therefore, various featues such . icati ith oth troll i
as parallelism, priorities on branching transitions, and activity requinng communication with other controllers or compute

manipulations are incorporated. The syntactic rules for bulding €duipment for plant management functions [2], [3].

SFCs are formally defined in IEC 61131-3. It is, however, stil Control systems driven by PLCs are often complex, safety
possible to derive SFCs from these rules whose structure do critical, and involve a lot of money. Any failure of these
not make sense. In this work we give a characterization for 0 gystams might not only result in a significant financial loss

called safe SFCs. Moreover, we present a semantic definition for but lead t It I H tt bust
them, as well as an algorithmic approach to automatically deect ut can lead to casuallies as well. Hence, next {o robustness

whether an SFC is safe or not. and reliability, their actual programming and the corress
of the programs plays a vital role.
. INTRODUCTION There exist different programming languages for PLCs.

Computers penetrate nearly every area of our daily lif#hese have been designed with an emphasis on control tasks,
They control telephone systems, automated teller machineach intended for a specific application domain, and based
cars, etc. Everything is computer driven or at least sugporton the background of the control engineers who use them.
by computers. But a major part of the computer systems Wae standard IEC 61131-3 was developed to achieve more
never see. All the things natural to us like water, food, armbnformity of the different PLC programming languages.
electricity rely on computers as far as their distributiomda One of the languages defined in this standard is called
manufacturing process is concerned. Sequential Function Charts (SFC3)his is a graphical, high-

Wherever we get in touch, directly or indirectly, withlevel programming language which aims at providing a clear
computers and computer driven hardware, their main purpasederstanding of the possibly interwoven program part€sSF
is: control. The control of the traction of the car wheelsllow to decompose and structure program parts and include
of restricted access, the scheduling and transport aloag thteresting concepts such as parallelism, activity maatmn
assembly lines for food packaging, and the control of mamand hierarchy.
safety-critical applications such as fission control inleac ~ The standard provides formal rules for building SFCs, i.e.,
power plants. there is a well-defined syntactic framework. However, not

The systems responsible for control are mostly not generailrery SFC built according to these rules makes sense. The
purpose PCs but specific industrial computers. The reasatisicture of an SFC may yield that the SFC is “unsafe”
are simple and stem from the requirements of such contml “unreachable”, which are notions defined in the standard.
systems: they have to be robust, reliable and cheap. R@sasstrBuch SFC structures are declared as erroneous. The standard
to ensure that these systems also work under hazardbosvever, provides neither means to detect such structures n
conditions, which might be heat, dust, and electro-magnetiny precise characterization of this phenomenon.
noise [1]. Reliability in order to have them running 24 hoars In this work we pinpoint the characteristics for such erro-
day over 5 or even 10 years. And they have to be cheap to entepous structures and, moreover, provide means to detent the
a mass market and to reduce the costs of the manufacturirgs detection is based an on algorithmic approach and &s suc
process. can take place fully automatically.

Next to micro-controllers, specific purpose computers on aThe remainder of this work is organized as follows: In
single chip, a prominent class of industrial controllers a0 Section Il we present a brief introduction to SFCs, followed
calledprogrammable logic controller§PLC). First developed by a characterization and formal definition of safe SFCs in
during the early 1970s, PLCs started as simple devices Section Ill. The subsequent Section IV introduces simple
replace electro-mechanical relays. Using integrateduitirc SFCs, an abstraction of SFCs which is sufficient for a de-
technology, they performed simple sequential controlgask cision procedure for safe SFCs. In Section V we define an
isolation from other control and monitoring equipment. $ée algorithmic approach to check for safe SFCs. This decision
simple devices have grown into complex systems capalpecedure relies on model checking simple SFCs for padicul
of almost any type of control application, including motiomequirements. Therefore, this section includes a trapslat

from simple SFCs to the input language of a model checker,
as well as the automatic generation of the according safety r
quirements. All this is illustrated by an example in Sectiin

The conclusions and future work are discussed in Section VII 9

Il. SEQUENTIAL FUNCTION CHARTS

Sequential function charts are defined in [4] as elements
of a graphical programming and structuring language for 1) (2) 3)
programmable logic controllers. The SFC definitions in the
standard IEC 61131-3 are based on IEC 60848 [5], which
defines the specification language Grafcet. Grafcet in tsirn i
strongly related to Petri nets [6].

Basically, SFCs are transition systems consistingsteps
(the locations) andransitions For every SFC there exists
exactly oneinitial step. Every transition is labeled by an
associated transition condition, callegdiard Moreover, one

or moreactionsmay be associated to each step. Actions are 4) (5)
programs in one of the programming languages proposed by
the standard. Since the actions associated to steps cardse SF Fig. 2. Basic transition types

themselves, a concept of hierarchy is provided. An example

of an SFC is depicted in Fig. 1.] N N)
simple transitions. Also note that any transition drawrhaitt

an arrowhead is understood as going from top to bottom.
An additional feature of SFCs is to explicitly assign transi

initial
->

step tion priorities to alternative branches. When firing tréinsis
transition- > . the one which has the highest priority among the enabled ones
wep s PR will be taken. _ _
action qua“ﬁe‘r\ action An SFC, like any PLC program, operates in a cyclic mode.
name At the beginning of each cycle, inputs are read from the

environment (e.g., sensor readings) and stored in vasable
Then all programs associated with active actions are egdcut
resulting in a computation that changes some variablegr Aft
that, all guards on transitions starting at active steps are
evaluated, and the enabled transitions are taken, chatiging
The action blocksshown in Fig. 1 are a graphical meanéset of active steps. At the end of the cycle, outputs (which

to associate actions to steps. An action block consists of %%ually depend on the previous computation) are sent to the

) o ; . : nvironment. Then the next cycle starts. A full SFC semantic
action qualifier,which can be used to specify the duration o . .
. . T or a comprehensive class of SFCs can be found in [7].
the respective action (e.g., permanent or limited in tinaeyg

. C o . The basic transition types shown in Fig. 2 can be combined
theaction namewhich identifies the program that is run when L :)

o . Into more complex transition structures like those shown in
the action is active.

An SFEC does not necessarily have to be a single sequerﬁi . 1 and Fig. 3. However, there are varipus combinations
of steps and transitions. For SFCs we can identify a numtyvrlc.h do not seem to make sense, €.g., n the SFC. shown
. " :) i i Fig. 3. There we have the transition from to s; which

of different transition types (cf. Fig. 2): : .,
jumps out of a parallel branch, the transition framto ss,
« simple transitiondetween two steps as denoted in (1),which jumps from one simultaneous branch to another, and
« alternative branchingi.e., the choice between severajpe transition fromss and sg to s7, which is a convergence
transitions as in (2), of simultaneous sequences of two steps which are part of an
« divergenceas in (3), i.e., a parallel branching from oneyjternative branching starting in step.
step into a set of parallel steps, and Although the standard forbids to use such ill-structured
» convergencg4) which denotes a synchronization of sevspcs (which are called “unsafe” or “unreachable”, see Sec-
eral parallel steps into a single step. tion 2.6.5 of [4]), it does not give a precise characterozati
Furthermore, direct combinations of both convergence anfl this phenomenon. In the following we define the notion
divergence as depicted in (5) are allowed. Moreover, thd safe SFCswhich subsumes the absence of “unsafe” and
standard refers to transitions like the one guardedybyn “unreachable” structures and give a semantic charactieniza
Fig. 1 asloops From our point of view loops as well asMoreover, we define an algorithmic approach to determine

alternative branching belong to the same class, namely¢éet automatically for any given SFC if it is safe or not.

Fig. 1. Elements of SFCs

(@) (b) (©)

Fig. 4. Various types of “unsafe” and “unreachable” SFCs

Fig. 3. “Unsafe” SFC

taken. We clearly want control not to jump from one process
to another when in fact we demand a proper synchronization.
lIl. SAFE SFCs Semantically, this means that control might reside simulta

The structure of the SFC depicted in Fig. 3 complies to t eously at different places in the same process. To understa
js, imagine the following scenario in Fig. 4 (a): Contrialrss

syntax as given in IEC 61131-3. The SFC as such, however, ¢ d ; d s.. While in the right
does not make sense. We like to stress that this observatioh. iepSot aln moves _n .t(sl an Sf3 tlhe Ilnft e ”gt
does not depend on the semantics of the given guards or tﬁgnc control remains 18 1t moves from tne 1eft ins; 1o

possible associated actions. It is a structural problemhin t right N 54. _NOW’ control resides in two steps in the same
first place process, i.e., ins3 and s4. In SFC (b) we can construct a

. . . similar scenario with the same result.
We characterize what kind of constructions do not make any . : . .
If we consider control asokens(as in a Petri net setting)

sense. Any SFC without a divergence/convergence is alwarxs

) : oving around according to the SFC transition structure, we
sensible as long as the syntactic rules are followed. Horyveve o) .
can phrase one condition for a safe SFC as follows: There is

if we allow parallelism there are three major violationsttha : .
might occur (cf. Fig. 4): never more than one token simultaneously in the same process
))] If we completely abstract an SFC from guards and actions and
1) There is a jump between different parallel branchggiow control to reside in a location for an arbitrary number
without a proper synchronization first (SFC a). Thigf cycles, we can rephrase the condition as: Determine that
violates a proper parallel structure. ~no step ever has more than one token. The abstraction to
2) There is a jump out of a parallel branch, probably into 8rcs without guards where control may reside in a step for an
different parallel branch (SFC b). This violates a propg{rpjtrary time is a sensible abstraction, since we want tifyve
synchronization. structural properties that do not depend on specific guards a
3) Two or more alternative branches of the same parallgliions.

branch are synchronized (SFC c). This does not makeThe issue of proper synchronization is slightly different.

sense either. The SFC (c) in Fig. 4 is not “unsafe”, since control cannot

This leads to the following characterization: simultaneously reside in two processes. But it is “unreach-
able”, since there are not enough tokens for the convergence

Characterization 1 (Safe SFC) which is of course due to the alternative branching. Hence,

An SFC issafeif and only if there are no jumps betweerthe second requirement is that there has to be a possibility
parallel branches, no jumps out of parallel branches, ant simultaneously reach all source steps of any converging
every branch is properly synchronized. transition. Again it is useful to consider SFCs abstractechf
any guards and actions.

Although we have characterized safe SFCs by the above defNow we can formally define our requirements.
inition, we have not yet explored the semantic consequences
This is done next. Definition 1 (Safe SFC)

The first two items of the characterization above described SFC issafeiff
breach of proper parallelism. Let us consider parallel thas 1) for all possible executions there is at most one token in

as independerrocessesWhenever a diverging transition is a process and
taken, in each of the target steps a process is started, and) for any converging transition there exists an execution
it is terminated when the respective converging transitgon such that the transition can be taken.

Both requirements can be stated as reachability proble#s Translation of Simple SFCs to CaSMV Models

over finite graphs and, hence, are solvable by model checkragmy is a symbolic model checker which supports the

ing. In the following we describe a simple model-checkingeification of temporal logic properties of Kripke structg
framework for SFCs where the respective requirements ¢ai| The transition relation of a Kripke structure is exgsed
be checked automatically. in CaSMV by evaluation rules depending on the current and
IV. A SIMPLIFIED FORMAL MODEL the next state of each system variallewritten asq and
ext(q) in CaSMV notation. In order to translate a Simple
model. It serves as a basis for the latter translation in%:c_s — (_S’ s0,T) 1o (_:aSMV we mimic the trar?smon
the input language of a model checker. Since we are offy2tion as given by the Slmple S.FCS' Therefore, we intreduc
interested in structural properties of SFCs, there is nad hee tne following Boolean variables in our CaSMV model &f
define SFCs with their full set of features. In particular, we S: for eachs; € S, i.e., one variable for each step of the

In order to model-check SFCs, we first give a formal SF

are only interested in the overall SFC structure, i.e., teps SFC. These variables model whether there is a token in
and transitions. We call such a reduced mod8iiaple SFC. this step, i.e., control resides in it. Initiallg, = true,
We define the syntax for a Simple SFC as follows: and for alli # 0, s; = false.
« g, for eachg;. This variable istrue whenever its asso-
Definition 2 (Simple SFC) ciated transition condition evaluates teue. We do not
A Simple SFC consists of a triple = (S, so,T'), where put any restrictions on the initial value and the changes of
« S is a finite set of steps, anyg,, and thus over-approximate the real SFC behavior,
e Sp € S is the initial step, and in which the evaluation of a guard usually depends on
o T C(25\{0}) x G x (25\ {0}) is a set of transitions, variables not contained in our CaSMV model.
each transition labeled with a guard from a setG of e map the transition relation of a Simple SFC to CaSMV
transition conditions. by explicitly defining thenext -state of all step variables, i.e.,

we define how state changes evolve over time.

For every transition(S, S, T the setS; is the .
y (95,9, 5) € ° The next -state of a step variable; of a steps; has to

non-empty set of source steps afdthe non-empty set of . . o . .
target s?e%s. For simple tranr;itions both sets a?eysingietobe true, i.e., there is a token in it, if and only if there is a
Alternative branching is modeled through a set of simpfkansition taken intas; in the next -state or it is alreadyrue
transitions, i.e., several transitions from the same sostep now anq there is ho transition taken that !eavgsTo put it
to different target steps. For divergence transitions tteo simple, if a tokeq IS moved-tei the step_varlablei becomes
target stepsS, is a non-singleton set and for convergencferue and it remaingrue until the token is moved away from
S, is a non-singleton set. Note that this simple model doé§
not include priorities, actions and hierarchy. It is, hoeev
sufficient for deciding safe SFCs, since they do not depend on next(s ;) =

possible priorities or the semantics of actions. Hierarghi s;_will_be_enteredv (s; A s;_will_not be left).

SFCs can be checked compositionally, i.e., each SFC is] -)

checked independently and, as such, they can be modelel si is entgr.ed depepds on two.condmons. First, there has
independently. to be_a transitiort that is enabled in the next cyclgl anq that

Briefly, the evolution of a Simple SFC is defined as followssontainss; in its target set. Second, any other transitiowith
Control starts in the initial step. Whenever a gugrevaluates the same source set_ is not taken. The second part is necessary
to true and control resides in all source steps the respectifRCoPe with alternative branches when several guardg-are
transition, it moves on to all target steps of that transitio &t the same time. E.g., when taking a transition leawingn

Fig. 2, at most one o0&y, s5, s¢ can be active in the next
V. MODEL CHECKING FORSAFE SFCs cycle.

Model checking [8], [9] is a formal verification technique
based on an automatic, exhaustive enumeration of all dessib
behaviors of a system. Provided we have a formal execution (Ft=(Ag,B)eT : s € BANEX(Q) A /\ S;)
model M of a system (the operational semantics for SFCs in , R sj€A
our case) and some property(we are interested in checking AVt = (4,9, B") € T\ {t} :

Definition 1 for a given SFC), a model checker can be used ~ next(@) = /\ -next(s ;))
to compute the validity ofp in M, often stated ad/ E ¢. s;€EB'\B

In th_e following we define a translation.from Simple SFCs ¢ s; already has a tokers, remainstrue if no transition
to the input Ignguage of a modgl chec.kgr. in order to check fﬂéving s, in its source set is enabled:
safe SFCs, i.e., compliance with Definition 1. Although any
general-purpose model checker can be used for this task, we s;_Will_notbeleft =
define the translation and verification process for@aglence -3(A,g,B) €T : s; € AAnext(g) A /\ S;
SMV (CaSMV)model checker [10]. s;€A

Formally this can be expressed by:

s,;-_will _be_entered=

Generally, the evolution of the guards have to be specifiedHaving defined this, the verification condition for the re-
according to the information they reason about, e.g., inpgtirement that there is at most one token in a process boils
variables which correspond to a PLC’s sensor data. In odown to the requirement that there is no token overflow. 8tate
setting, however, the structural properties are indepanoe as a temporal logic formula in CaSMV syntax:
any specific guards. Thus, we chose one distinct Boolean
variable for each guard at each transition and leave this
variable unspecified. As a result the guards evolve Nofpi means that imll executions aanytime a token overflow
deterministically, which just reflects all arbitrary berag does not occur.
independent of specific semantic issues.

SPEC AG !token _overflow.

2) Proper synchronization:The verification property for
B. Generating Verification Conditions proper synchronization is slightly different. We have teck

Having defined a translation from Simple SFCs to the inpfRF €Very converging transitiof, g, B) € T' with |A] > 1

language of the model checker, it remains to translate tHit there is a least one execution in which at some point all
requirements for safe SFCs, as given in Definition 1, in®fePS inA have a token. We defin. as set of all converging

verification conditions. This is done separately for eacthef transitions:
two requirements.

1) A?t most one token in a procesk order to check that T={(A4gB)eT | |A]>1}.
there is never more than one token in a process, it suffices, die require for all(A, g, B) € T.:
to the non-determinism, to check that there is never mone tha
one token in a step. For technical reasons we distinguish two SPEC EF &cas;.
cases where such a situation can arise: Firstly, if a tokadee

in a step and another token moves into this step and, secon-(gl—R/IS means for all converging transitions that eventudlbre

. : L 7" IS’a token in all source steps. Note, however, that this needs
if there are two tokens from different transitions movingpin
not to be the case for the concrete SFC. Here, we abstract from
the same target step. _—)
: . any restrictions imposed by guards etc. and, therefore- ove
In preparation to check that there might be more than . . .
: approximate the behavior to test for the structural compka
one token in a step at a time we introduce an additionad . .
X - . : ' The whole translation process as well as the generation of
variabletoken _overflow to indicate just this. We define e " . .
the verification conditions and their checking can be dotig fu

token _overflow such that it is set terue whenever there e
. . ..automatic. This means, there is no user interaction regjirre
is a token in a step that can be entered by another transn%on

or there are two transitions that can enter the same Sgstlng for safe SFCs.
simultaneously. Initially, the variable is set faise. C. Reduction of Model Size
Formally, the evolution otoken _overflow checks the

two conditions above for all steps € S: One disadvantage of the previous translation and verificati

process is that we explicitly model each transition conditiy

next(token _overflow) = \/ (a Boolean variable. However, the verification is indepemden
5;€8 of these conditions, i.e., we do the check for every possible
combination of guard evaluations. If it is possible to parfo
(Si A \/ (si € BAnext(g) A /\Asj)) the same checks without using a variable for each guard, we
(4.9, B)ETAA#B %€ can reduce the potential state space of the model signifjcant
v (\/ (si € ByN By A Such an approach is introduced next.
(Av,91,B1)ETA(As,g2,B2)ETAALNAs=0 We suggest the following: We substitut_e in the translation
next(gl) Anext(g2) A /\ sj))) process every guard by the constante. This allows control

to move freely through the SFC. However, this alone is not
sufficient. By the synchronous execution mechanism in each
9cle every enabled transition has to be taken. This means in
articular, if all guards evaluate tbue control has to move

ut of a step in every cycle (if possible). However, we like th
control to behave arbitrarily, in particular it should bespible
to remain in a step.

Therefore, we rephrase our definitions for the transition
relation in such a way that guard variables are no longer

since the occurrence of a token leaving and entering the s &4 in the CaSMV model. Instead of using guard variables

stgrph&multarzjeous(ljyt.ls nor: cokns_:cdt(re]red to bf ar: errq:_. 5 o determine if a transition is taken, we use the existence of
e second condition checks If there are two transitions Wit o, i its source or target steps after the transition.

different source stepsd N A> = (}) havings; is in both their
target sets. If in the next cycle both transitions are erhble next(s ;) =
then both tokens can move into the same step s;_will_beeenteredV (s; A s;_will_notbe left')

Sj c€A1UA5

The first condition states that we have a possible tok
overflow in s; whenevers; and all source steps of an enable
transition leading t@; have a token. The reason is, in the ne
cycle the tokens from the source step might move;tavhile
the token ins; can remain ins; due to the non-deterministic
guards. This results into more than one tokem;inNote that
we needA # B to exclude self-loops from the test above

where default next(sl) := si;
in case{

s, _will_be.entered = s4 & "next(sd) =1,
(ﬂt = (A,g,B) cT : sl & next(s2) & next(s3) & next(s4) :=0;}
si € B /\ S; A /\ —next(s)) default next(s2) := s2;
s;€A s,EA\B in casi{& . .
S “next(s =1;
A = (A g, BYET\{t} : J\ -next(s) 2 & nowi(ss) =0}

s;€B'\B
default next(s3) := s3;
and in case{

Wi _ sl & “next(sl) =1;
s;-will_notbeleft’ = s3 & (next(s5) | next(s6)) :=0;}
-3(A,9,B) €T : s, € AN [\ s; A J\ next(s)
default next(s4) := s4;
s €4 skEB in case{
We also remove guard variables from the definition of 5411 g ~nextt(511) 1.=_10:.
token _overflow S next(s1) =0}
nexttoken _overflow) = \/ (dﬁ:aggsgfﬂ(sa = 85
si€S s2 & “next(s2) :=1;
s3 & “next(s3) & "next(s6) :=1;
(si A \/ (s; € BA /\ S;)) s5 & s6 & next(s7) =0}
(4,9, B)ETAAZE s5€A default next(s6) = s6;
in case{
v (\/ (si € BLN B2 A s3 & "next(s3) & "next(s5) :=1;
(A1,91,B1)ETA(A2,92,B2)ETAAINA2=0 s5 & s6 & next(s7) :=0;}
A /\ Sj))) default next(s7) = s7;
s;€EA1UAS in case{

. - . . s5 & s6 & "next(sb5) & "next(s6) :=1;
Here it is sufficient just to remove all guard variables (more (s5) (s6) !

precise: replace them withrue), since whenever the variable

. . Fig. 5. SMV code for SFC of Fig. 3
token _overflow becomestrue in the old definition, the g g

guard variables occurring in the formula are:e anyway. default next(token_overflow) := 0;
in case{ -
VI. EXAMPLE sl & s4 =1
Let us consider the SFC of Fig. 3. The transition relation in :g g %) iy
CaSMV as defined in Section V-C is given in Fig. 5. As you s4 & sl =1

can observe, a step obtains a token, i.e., becomesie (1 in S5 & (s2 | s3) =L

CaSMV), if there is a token in the source step of a transition 5556 8(; (:g & s3) ::_1;1_

to s; which is removed in the next cycle and is not moved to <7 & (s5 & s6) =1}

some other step thas. A token is removed from a step

(s; is set to0), if there is a transitiort leavings; such that all Fig. 6. SMV code for token overflow

source steps of have tokens now and all target steps in the

next cycle. Not shown in this figure is that initially all sgep (* SPEC token overflow *)

but the initial steps; are false, i.e., there is only one token in SPEC AG ! token_overflow

the initial step. (* SPEC proper synchronization *)
The CaSMV code for thetoken _overflow variable SPEC EF (s5 & s6)

according to the definition in Section V-C is presented in

Fig. 6. It shows that théoken _overflow variable is set to Fig. 7. SMV code for verification conditions

true whenever there is a token in a step and another transition

into this step or if there are two steps with a token which have

the same target step. producing more tokens then allowed. If the sequential brasc
The verification conditions are shown in Fig. 7. They stafom s> and sz do not overlap anymore, the synchronization

that there should be no token overflow and the transitid@ils as well.

involving s5 and s have to properly synchronize. The counter examples delivered by the model checker show
The first verification condition, however, is violated. Henc the evolution of the tokens from the initial state (one token

the SFC is not safe. Moreover, a counter example is produdbé initial step) up to the point of failure. This informatio

by the model checker that helps to improve the structure sudbes not show directly which parts of the structure make the

that the SFC becomes safe. Note that the second verificat8iaC “unsafe” or “unreachable”, but helps to trace the proble

condition only holds because of the additional unsafe sirec ~ Since our model of Simple SFCs focuses on the structure

and abstracts away from data and actions, the complexity $fecification Techniques for Applications in Engineering”
the resulting SMV model is relatively small. The computatiounder grants RO 1122/10-2 and EN 152/32-2.
times of the model checker stay within a few seconds, even

for large SFCs. REFERENCES
[1] D. Morley, “The history of the PLC,” http://www.barn.ofFILES/
VII. CONCLUSIONS historyofplc.html.
- . . [2] R. Lewis, Programming industrial control systems using IEC 1131-
This is the first work that presents an approach to determ|r{e] 3, revised ed., ser. Control Engineering Series. Steveneigited

safe SFCs. A characterization of this phenomenon, as well Kingdom: The Institution of Electrical Engineers, 1998).\&0.
as a semantic definition is given. Moreover, an algorithmi¢3] F. Bonfatti, P. Monari, and U. SampierlEC 1131-3 Programming

. Methodology 1st ed. Fontaine, France: CJ International, 1999.
solution was developed that allows to check for safe SFGg; programmable Controllers — Programming Languages, IEC %t

automatically. 2nd ed., International Electrotechnical Commission, Tiégdl Commit-
There are several existing approaches to the verificating] tee No. 65, Nov. 1998, committee draft.

. . IEC 60848, Preparation of function charts for control syste Inter-
of SFCs [12], [13], [14]. However, none of them is tailored™ ational Electrotechnical Commission, Technical ConeitNo. 848,

to automatically determine safe SFCs. The advantage of our 1992. _ _
tailored approach in contrast to a genera| verificationam:fn [6] R. David and H. Alla,Petri Nets & Grafcet Prentice Hall, 1992.

. . . 7] N. Bauer and R. Huuck, “A parameterized semantics forusatjal
is that CheCk'ng for safe SFCs does not require any USé'J function charts,” inWorkshop of Semantic Foundations of Engineering

interaction at all. Hence, it can easily be embedded in aigly Design Languages (SFEDLApril 2002, satellite event of ETAPS 2002.
and design tools and serve as a back-end for automatic checlé@ E: M. Clarke and E. A. Emerson, “Design and synthesis oiciyoniza-

- | biosis of th ificati h tion skeletons for branching time temporal logic,’Lingics of Programs
An optimal symbiosis of these two verification approaches Workshop, IBM Watson Research Center, Yorktown Heights, Yéek,

might look like this: A PLC programming environment, which ~ May 1981 ser. LNCS, D. Kozen, Ed., vol. 131. Springer-Verlag, 1982,
usually provides means for the design and programming pp. 52-71.

SEC I . lati biliti . ded wi] J.-P. Queille and J. Sifakis, “Specification and verifiwa of concurrent
s as well as simulation capabilities, Is extended wit systems in CESAR,” iflProceedings of the 5th International Symposium

both verification approaches. The checking for safe SFCs is on Programming, Turin, April 6-8, 1982M. Dezani-Ciancaglini and
started automatically before any compilation or simulatid U. Montanari, Eds. Springer-Verlag, 1982, pp. 337-350.

SEC. al ith th | . heck Jl(g R. Jhala and K. L. McMillan, “Microarchitecture verifiton by com-
an SFC, along with the usual consistency checks, e.g., typ positional model checking,” ilComputer Aided Verification 13th Inter-

checking. Counter examples found during model checking can national Conference, CAV 20p%er. LNCS, G. Berry and H. Comon,
be visualized in the simulator, helping to find the strudturfflll] Eds., vol. 2102, 2001, pp. 396-410.

. e - . S. A. Kripke, “Semantical considerations on modal tjgiActa Philo-
error. Since the general verification approach requiresitee sophica Fennicavol. 16, pp. 83-94, 1963.

to provide formal specifications which are to be checked it [12] D. L'Her, P. L. Parc, and L. Marcé, “Proving sequentiahction chart
0n|y started on request by a user with knowledge in formal Programs using automata,” Proceedings of 2nd AMAST workshop on
hod Real-Time System4995.
methods. [13] S. Lampériere-Couffin and J.-J. Lesage, “Formal figaiion of the
sequential part of PLC programs,” WODES 2000: 5th Workshop on
ACKNOWLEDGMENT Discrete Event Systems, Ghent, Belgium, August 2123, 2000.
This work was Supported by the German Research Cour{&ﬂ] N. Bauer and R. Huuck, “Towards automatic verificatidnembedded

I L B . control software,” inAsian Pacific Conference on Quality Softwaser.
within the DFG Priority Programme “Integration of Software |EEg, December 2001.

