Compositional Verification of Continuous-Discrete
Systems

Ralf Huuck, Ben Lukoschus Goran Frehse and Sebastian Enggll

1 University of Kiel, Institute of Computer Science and AgaliMathematics, Chair of
Software Technology, D-24098 Kiel, Germaryhu,bls; @informatik.uni-kiel.de

2 University of Dortmund, Process Control Lab (CT-AST), D224 Dortmund, Germany,
{g.frehse,s.engégl@ct.uni-dortmund.de

Abstract. Hybrid systems are well-suited as a design and modelingdnark to describe
the interaction of discrete controllers with a continuonsi®nment. However, the systems
described are often complex and so are the resulting mote¢sefore, a formal framework
and a formal verification to prove the correctness of systempearties is highly desirable.
Since complexity is inherent, standard formal verificatitenhniques likemodel checking
soon reach their limits. In this work we present severalangtihow to tackle the com-
plexity arising in the formal verification of hybrid systems particular we combine the
model checking approach witiibstractionand decompositiortechniques such as ttees-
sumption/commitmemhethod as well as deductive methods.

1 Introduction

The description of real-world physical systems has alwagenban issue. Such a
system model not only enhances the understanding of thelyimdephysics but it
makes it possible to actually predict the system’s behaioice nowadays nearly
every production, power generation, and logistics protseisighly automated, such
a prediction is extremely valuable in order to simulate thstesm’s behavior in
different environments or even to prove that certain prigeare satisfied.

However, every system model is by nature an abstractioreaftal world. Find-
ing the right abstraction and, thus, developing the rigktesyp model is not an easy
task. In general the abstraction and, therefore, the med#lasen according to the
design level one is interested in. At times the detailedicoous physical behavior
is the focus of study and other times discrete behaviors asidommunication and
synchronization is of main interest.

Continuous models are used, e.g., to describe movementgdianical sys-
tems, linear circuits or chemical reactions while discratdels are sufficient to
describe the collision of two objects in a mechanical systm switching in cir-
cuits or the use of pumps and valves in chemical plants. @oatis models are
generally given in the form of differential equations, gbssupplemented by a
set of algebraic constraints. In contrast, discrete maatelsnore diverse but often
can be captured by some form of a state representation.dahpsocesses are con-
trolled by software on digital computers. Such embeddedrobsystems combine
continuous physical behavior with discrete control altjoris and are calleldybrid
systems.

2 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

To model and to verify hybrid systems which describe theradtton of con-
trol software with a physical plant is a very desirable gbldwever, it is not easy
to achieve since it requires a unified framework coveringdbetinuous and dis-
crete world and a verification framework which is able to cel such systems.
This is even more difficult when thinking of exhaustive vedtion that is as much
automated as possible. This means, from a formal systemipiése and a set of
requirements the verification task can be left to a compDiespite theoretical lim-
itations of this approach any verification technique hasopecwith the immense
complexity that lies in the nature of such a system.

Then, why to use formal description methods and formal watitbn at all?
In the current design system processes some methods tocenti@nquality of the
software and the overall system have already made theirnmtayridustrial standard
practice. These comprise techniques such as listing saftw@guirements and striv-
ing for a clean documentation for the design process as welbde review, system
simulation and testing to check for the correctness of th#émented system.

However, techniques in common practice have various drelkgba

e They often lack a formal basis. For instance, the specifinati defined in nat-
ural language, which easily leads to misunderstanding dsisht@rpretation.

e The requirements are not complete, i.e., there are casehahé not taken
into account. Hence, parts of the system remain unspecifiddthus, are al-
lowed to behave differently than the designer had in mingeEmlly without
a formal model it is more likely to forget cases, or cases Whie defined in a
contradictory way remain undetected.

e The verification of the implementation might be approacimeali unorganized
way. For instance, testing is done with some arbitrary ispuften it is more
efficient to choose data according to the boundary conditafrthe model or
the implementation, simulation focuses on “non-importaatiables and code
review neglects inter-procedural dependencies etc.

e Most informal techniques like testing or simulation are exhaustive, i.e., the
they do not cover all program executions and thus give wayhtle but often
fatal flaws.

Formal methods promise to remedy the above mentioned wesgseHowever,
formal methods are not fool-proof by themselves. Sometitneg require exhaus-
tive knowledge in mathematics, logics and the understandiithe system. More-
over, they do not a priori prevent forgetting about requieats or even ensure to
appropriately map the real world to the model. Especiallgaftware design one
often has a clear idea of what to achieve, but much less of bapécify this for-
mally or even to define what is considered to be legal and vtz harmful. Formal
methods provide tools to further investigate into the desigd verification process
and allow to enhance the quality of the system significahtlythey do not buy any
guarantee that what you prove is what you have in mind.

This work concentrates on applying formal methods to hybystems while at
the same time tackling the inherent complexity issues. Pipeaach presented here
does not take the whole system at once into account, butegivite system and,

Compositional Verification of Continuous-Discrete Syssem 3

hence, the verification task, into several components avetadayers of abstrac-
tions. The division and verification of single componenteiewn ascompositional
verification. However, hybrid systems are often too complex and too irdeen
to find single components that can be verified independehtlyeoremaining sys-
tems. It is much more natural to make soassumptionsbout the behavior of the
remaining system under which the selected component caetifeed. The verifi-
cation of the component results into sogEmmitmenthis unit fulfills under the
given assumptions. Applying this method to every compoatihteaves the task to
combine the assumptions and commitments in a meaningfuhanetontradictive
way. In this work we present a framework which allows to reaisothis so-called
assumption/commitment stydad supports a formal and automated verification as
far as possible.

We start with a brief overview on software verification andnpmsitional tech-
niques in Section 1.1. In Section 2 an introduction into ad&ad formal verification
technique callednodel checking11, 51) is given. We explain the basic terms as
well as logics and techniques used. The subsequent Sedfieal8with complexity
issues of formal verification and hybrid systems.

1.1 Historical Notes

This section gives a brief summary of the development of &software verifica-
tion approaches in general and some important compodlitiogifods in particular.
More extensive surveys can be found in (14, 15).

Formal Verification of Software From the beginnings of the computer age, ver-
ification of software has always been an issue for programmiaued system devel-
opers. Pioneers like John von Neumann and Alan Turing ajrérexight about the
correctness of programs for the first computers (22, 56).

In 1967 Robert W. Floyd presented tineluctive assertion methdd9), a formal
strategy to prove the correctness of sequential progranttewas labeled transi-
tion systems. A similar approach was presented by Peter (d&)ipbne year earlier.
C.A.R. Hoare axiomatized this method into a compositiotydégor sequential pro-
grams (26). Programs are annotated with assertions, aindtmneectness is proven
locally. Then the local assertions can be combined in a caitippal fashion to
obtain a global specification.

This Hoare-style proof system was extended to concurremeshvariable pro-
grams in 1976 by Susan S. Owicki and David Gries (47). Theithog: however
involves a so-calledhterference-freedom testjhich operates on every combina-
tion of local control locations and therefore is non-comitiosal.

Proof systems for programs with distributed synchronousroanication were
independently developed by Krzysztof R. Apt, Nissim Franeed Willem-Paul de
Roever (3) and by Gary M. Levin and David Gries (37). Here @aledcooper-
ation testis done for every combination of input and output actionsicilis also
non-compositional.

4 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

In 1977 Amir Pnueli developed the temporal logic approachte verification
of concurrent programs (48), for which he received the TwAward in 1996. This
method is also non-compositional.

Compositional Approaches In 1969 Edsger W. Dijkstra was the first to publish
within the computer science community the opinion that cosiipnal reasoning is
needed for the formal verification of large programs (16).

Cliff B. Jones developed a compositional verification apjgtofor concurrent
shared-variable programs (32, 33). His so-catiglg-guarantegormalism, which
specifies a system by its desired properties (guarante@pcbthat its environment
behaves in a certain way (rely).

A similar compositional approach for distributed syncloos communication,
called theassumption-commitmentethod, was presented by Jayadev Misra and K.
Mani Chandy in 1981 (44).

Within the field of process algebra — the main languages usgdde CCS (42,
43), CSP (8, 27), and ACP (5) — one has always been strivingdorpositional
reasoning, e.g., by defining behavioral preorders whictpegserved by the com-
position operators.

2 Model Checking

Common to every verification task is to prove that a systennpgnam or simply an
abstract model of a problem satisfies certain requiremeatsally, this is denoted

by
M ':¢)

whereM is a model of the systeng is the requirement ang- denotes the satis-
faction relation. model checking (11, 51) is an algorithnvy to decide whether
M satisfiesp. Although any verification approach is based on this, theadogic
or — more general — the formalism to denote these three it@massva lot. In the
following we present some formal models for each of them. Vi@ig focus on the
ones we will use throughout this work.

2.1 System Model

In this article we concentrate on verificationrefictive systemd.hese are systems
which communicate with their environment and may often e tiperating systems
— not terminate. Hence, a model which captures their infimfieavior in a concise
way is desirable. Simply specifying their input/output aeilor is not sufficient, it is
rather interesting to know thetatesof a system, too.

Therefore, we start by describing the behavior of a systeth some state-
based formalism. Such formalisms include Petri nets (53R @8, 27), CCS (42,
43), different forms of automata, LOTOS (7), SDL (53), etctHese formalisms the

Compositional Verification of Continuous-Discrete Syssem 5

behavior of the system is described in terms of local stassmgés or events. The
global behavior of the system is given as the state-spacergkeal from the system
description.

In this work we use different kinds of automata for the sysw@scription,
namely discrete, timed and hybrid automata.

Discrete Automaton A discrete automatoA = (Q,q,,d,F) over an alphabel
(events, actions) is a structure where

e Qs a finite set of control locations,

e (, is an initial location,

e 0:Qx 2 — Qis atransition function, and

e F is an acceptance condition.

A sequence of actions iB which is produced by taking a path through the au-
tomaton, starting with the initial location and satisfyitige acceptance condition,
is called aword. The set of all words, i.e., the set of all possible sequerfoesn
automatorA is called thdanguageof A denoted by (A). The acceptance condition
can vary from a single location which indicates the end of¢bguence once it is
reached to a set of locations which have to be reached idfirdfeen. The accep-
tance condition mainly determines the different kinds afcdéte automata which
can be found in the literature.

@ fill

Fig. 1. Discrete automaton for a tank model

fill

drain

drain

An example for a discrete automaton is depicted in Figurehls @utomaton
gives a rough model for a tank. There are two control locatitraining andfilling.
The double framed circle aroumbiaining indicates the initial location. Depending
on the actionglrain andfill transitions depicted by arrows are taken. We do not give
an explicit acceptance condition here and note that the himdery simplified, i.e.,
it is not captured that the tank might run empty or might oevfl

Timed Automaton In contrast to discrete automata, the setting of timed aatam
is in a dense real-time world. To express quantitative tiohecksare introduced
which are real-valued variables evolving over time. Morothey can be checked
against thresholds, and they can be reset when a transtiaken.

Formally, a timed automaton over an alphabés$ a quadrupld = (Q,q,,C,E)
where

6 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Qs afinite set of locations,

0o is the initial location,

Cis afinite set of clocks, and

E is a set of edges of the forfa, y,a, p,d'), whereq,q € Q are the source and
target locationsy is atransition conditioni.e., a Boolean formula over clock
variables and thresholda,c % is an action angb is the set of clocks that are
reset when taking this transition.

The language of a timed automata is given by the set of allgi@tsequences
over time. Traditionally, only infinite sequences are cdastd.

x>10 fill x:=0

x<=10 x<=1C
drain @ fill

x>10 drain x:=0

Fig. 2. Timed automaton for a tank model

A timed automaton example is depicted in Figure 2. In cohteBigure 1 there
is a clockx which constraints the moments transitions are taken. Taikserves
as a timer for draining and filling periods. Starting from thi¢ial locationdraining
the location is changed onlyxfis greater than 10. If so thes reset and control will
reside in locatiorfilling until the clock value exceeds 10 again. In the meanwhile
self-loops are possible.

Hybrid Automaton Discrete automata do not incorporate quantitative time, bu
timed automata do so by the use of clocks. However, they denoale! arbitrary
continuous functions. This feature is covered by so-cdilgotid automata. These
allow do model and reason about a set of continuous varialblgging over time.

Formally, a hybrid automatoH = (Q, ¢, Var,E,Act, Inv) over an alphabek
consists of

o afinite set of location® with some initial locatiory,,

¢ afinite set of real-valued variabl&ar.

¢ a finite setE of discrete transitions. Each transitien= (q,p,a,q’) between
two locationsg, q € Q labeled by some actioa € 5 depends on a transition
conditionp which reasons about the variables/ar,

e a labeling functiorAct that assigns a set of activities to each locatipa Q.
The activities describe how the variablesvar evolve continuously as long as
control resides im.

The semantics of an hybrid automaton is defined by all trajexs of the con-
tinuous variables as well as the actions over time.

Compositional Verification of Continuous-Discrete Syssem 7

fill

drain

Fig. 3. Hybrid automaton for a tank model

A hybrid model for the tank example is shown in Figure 3. Thael describes
the tank leveh in a filling and draining process. Draining is two times fadtean
filling. Although possible, there are no guards or resetshenttansitions, but in-
variants in the locations determine when exactly contralliswed to stay there.
Note that there also exist different timed automaton modséls invariants, dead-
lines and urgency. Mostly this has little effect on the esgieeness (cf. (54)), but
allows more or less convenient notations.

2.2 Computational Model

In the previous section we described very briefly how to desibehavior from each
description model. However, the models themselves arelyngypetax and in order
to formally derive asemanticsi.e., the system’s behavior, the system description can
be mapped to a mathematical abstract representation. B$timat representation is
also calleccomputational modednd represents the semantics.

One way to describe a computational model is a state transistem. It con-
sists of states and and has also the ability to represerathéfat in any given state
the system reacts to certain actions and might enter newraystates. This pair
of system states is then calledransition The semantics of a system is then de-
termined by the sequences of all transitions in a systemsth&atfrom some given
initial state. One formal way to describe these state ttimnssystems ar&ripke
structureg34), named after the logician Saul A. Kripke who used tiamssystems
to define the semantics of modal logics. Transition systemgi@aphs consisting of
states, transitions and a function that maps each stated@bd properties which
hold in that state.

Formally, we define a Kripke structure as follows: Given acfedtomic prop-
ertiesP, also called propositions, a Kripke structife= (S, S,,R, 1) contains the
following components:

e Sis a set of states,

e §, C Sis a set of initial states,

e RC Sx Sis a transition relation, which is required to be total,,ifer every
states € Sthere exists ag € Ssuch tha{s,s') € S, and

e 11 :S— 27 is a labeling function that assigns a set of propositionsvre
state.

An execution sequence of a Kripke structure is defined as silpipdnfinite
sequenceTr = §,S;S, . .. such thats, € §, and for every index > 0 in 7T we have

8 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

(S_1,5) € R This means starting from the initial state we go along a pathe
graph represented by the Kripke structure. The semantiasgétem described by
a Kripke structure is the set of all its sequences, i.e.,adbjble paths from all initial
states.

In order to describe the semantics of a system model it iskated into such
a computational model first. This means, the system modeesepts the syntax
and the computational model the semantics. For the difféypes of automata pre-
sented above, the computational models are also difféfdmte discrete automata
only have to reflect the control location in a state, timed engarticular hybrid
systems need to reflect time as well in a state. Since timerisedéor both the
latter models, it is not always guaranteed to find a finiteegsentation of these sys-
tems. However, using abstract or symbolic state represensai.e., the clustering
of concrete states into equivalence classes, in many cdsggeaepresentation is
possible also for timed and so calllidear hybrid automataThe latter are hybrid
automata which only allow fixed (but arbitrary) rates for ttemtinuous variables. A
finite representation is important in order to guarantemiteaition for algorithmic
approaches like model checking.

2.3 Temporal Logics

Describing the system formally is only one thing. For vedfion it is also neces-
sary to describe the requirements posed to a system in a lfstyd@. There are
different ways to do so. One fundamental issue is to chodseclea an operational
or a declarative way. In this context operational means, esing automata itself in
order to specify the desired properties. The advantageaisthie same framework
for system modeling is also used to specify the system reménts. However, it is
often a bit tedious to formulate requirements as automathaatomata are some-
times not as easy to understand as requirements. The dedavay means using
logics to specify the requirements.

As mentioned before, we are mainly interested in reactigesys and, there-
fore, are concerned about the states of a system as well aattsitions between
these states. Since basic propositional logic allows teara@bout states only but
not sequences of states or transitions, so-cadlegporal logic(49) is used in order
to remedy this fact. Temporal logic extends propositioogid, i.e., Boolean propo-
sition with connectivities such as logical conjunctiorgjdnction and negation, with
modal operatorsThese are operators lildwaysor eventuallythat allow reasoning
over execution sequences and can be combined with the umuzctivities.

Let us define propositional logic first. Based on proposgipriogical expres-
sions can be constructed by the following rules:

¢:=pl-¢|¢A0,

Other Boolean connectives like/", “ =", and “<" can be derived from " and
“A” as usual.

Compositional Verification of Continuous-Discrete Syssem 9

The semantics is straightforward and we is not shown heret, Me present the
extension from propositional to temporal logic. In geneval can define and dis-
tinguish between two main temporal sub-logics, namelgdirtime and branching
time.

Linear Time Temporal Logic One way to describe requirements is to define de-
sired sequences in time. Linear Time Temporal Logic (LTLl)was to reason about
paths in computational models like Kripke structures. Idesrto do so, proposi-
tional logic is extended by the following basic modal operst

e (O. This denotes the modality “next” and requires that a priypeolds in the
next state of a path, e.g., a pattin a Kripke structure satisfigs)¢ if and only
if ¢ is satisfied in the second staterof

e 7/. This denotes the infix modality “until”. l.e., a pathin a Kripke structure
satisfies the expressigh? @ if and only if ¢ is satisfied in some later state
of 11, and¢ holds in all states in between, including the first staterof his is
meant by the expressiog“until .

LTL is founded on these basic modalities and their free cowin with propo-
sitional logic. From these the following useful abbrevdat can be defined:

o O means “eventually”, and a pathsatisfies the expressiahg if and only if
there exists a state mwhich satisfiegp.
e O means “always”, and a pathsatisfies3¢ if and only if all states int satisfy

®.

Branching Time Temporal Logic In contrast to LTL branching time logics do
not reason over single paths but over sets of paths, moréspréees. One logic
which does so is called Computational Tree Logic (CTL) whighpropositional
logic extended byath quantifierandtemporal operatorsThe temporal operators
are the same as in LTL presented above. The path quantifeefs"avhich requires
a single path to exist that satisfies some property afisvhich requires all paths of
the computational model to satisfy some property.

CTL formulas are constructed from propositional logic, pemal operators and
path quantifiers in the following way: Every formula startghna path quantifier,
every path quantifier is immediately followed by a tempornaérator, and every
temporal operator is preceded by a path quantifier.

This allows to build formulas such as

e J0O¢, which means that there exists a path where always, i.e |Ifetades,¢
holds, and

e JOVO¢, which means there exist a path with a certain state from edrefor
all paths, i.e., brancheg, is always true.

10 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Remarks Note that CTL and LTL not only use different means to descsimem
properties, but in general there are LTL formulas which camapresented in the
CTL framework, and vice versa. Moreover, while linear tinppears to be concep-
tually simpler than branching time, the latter is often caotapionally more efficient.

For both types of logics there exist real-time extensiofiiss Theans the logics
provide the possibility to reason about explicit time arstatices. We do not go into
detail here.

2.4 Tools and Limitations

Returning to the initial task of checking = ¢, model checking is, as mentioned,
an algorithmic (i.e., automatic) way to decide whether a ehdd satisfies¢ or
not. There are several tools supporting model checkingdisarete automata and
logics like CTL or LTL there are SMV (40) and SPIN (28) as thestnprominent
ones. For checking timed automata with real-timed logiesetare WrAAL (36),
KRONOS (46) and extensions of SPIN. For linear hybrid systetyiTech (23) is a
tool that enables to check reachability of certain statet@icorresponding linear
hybrid automaton. Moreover, there are many more tools whiehalso based on
other system description models as well as logics.

For checking reactive systems one of the presented systatelsmand logics
is often used. However, due to fundamental limitations werymodel and every
logics is applicable for model checking. Timed and even ninytarid systems are
restricted to certain classes, since a finite state repiegtg@min whatever way has to
be guaranteed in order to keep model checking possibleléPnatiasses for which
there cannot be any general algorithmic solutions areatatelecidable

Despite of these basic fundamental restrictions modellkchghas also to cope
with serious complexity issues which are described in the section.

3 Complexity Issues

One of the main drawbacks of state-based formal verificatiethods is the so-
called state explosion problemiVhen a large system consists of several smaller
components (e.g., automata) running in parallel, the nurobglobal states in-
creases exponentially with the number of components. Bbatiite, consider a sys-
tem of 20 automata working in parallel, each of which havifddcal states. This
amounts to 1& global states. The simple task of enumerating these states o
machine that needs only one nanosecond per state (whichnédeoably fast at
the time of writing) already takes over 3000 years. Buildimgl searching a graph
based on these states takes significantly longer and is y@ndegoday’s memory
capabilities.

The state explosion problem is inherent in any system hgwémgllel structures
and poses a major complexity problem to any verification wethased on the
exhaustive enumeration of global states. Several techsijave been developed to
minimize the impact of this problem on the time and memorysconmption of the

Compositional Verification of Continuous-Discrete System 11

model checking process. Often a model checking algorithes ascombination of
several such techniques, which are discussed in the faitpwi

Note that although all these methods can result in a signifg@eedup in prac-
tice, they are limited by the worst case complexity inheterihe problem (35, 38,
57). E.g., model checking LTL or CTL properties for Kripkewsttures is polyno-
mial in nlogmwheren is the length of the formula anah is the size of the Kripke
structure. When it comes to concurrent programs, i.e, @iffeautomata composed
in parallel the problem is already PSPACE-complete everfitxed formula. The
same holds for model checking real-time systems in a timedmvieof CTL.

3.1 Global vs. Local Strategy

In accordance with the two parameters of the model checkiobl@m, the model

M and the requiremert, there are two basic strategies when designing a model
checking algorithm, the “global” and the “local” strategyl]. “Global” means the
algorithm operates recursively on the structure @nd evaluates each sub-formula
over the wholeM, while the local strategy checks only parts of the state spaa
time but for all sub-formulas op. The worst-case complexity of both approaches
is the same, however, the average behavior can differ gignifly in practice. Tra-
ditionally, LTL model checking is based on local approacivage for CTL global
algorithms are applied.

3.2 “On-the-fly” Techniques

The classical model checking approach builds a complete stnsition graph of
the system and performs a search on this graph. But ofterge paart of the graph
is not traversed during the search or is even unreachabtetfie initial state(s) of
the search. Therefore it is often a good idea to construcgtaph in an “on-the-
fly” fashion (6, 13). That is, only the part of the graph thatisrently needed is
constructed during the search and kept in memory for latesaeoften supported
by caching algorithms.

3.3 Efficient Data Structures

A considerable amount of memory can be saved using efficetatstructures dur-
ing the model checking process. One prominent exampléiaig@y decision di-

agrams(BDDs) (9, 10), which are used as a compact representatid@doofean

functions. Ken McMillan suggested in his PhD thesis (39) $e them for model
checking, and today BDDs and similar data structures arkefiesolution for effi-

cient memory usage in many kinds of computation software.

In the field of timed automata the observation that despéé ttontinuous na-
ture, clocks are often compared only to each other and a &inilebounded number
of constants, opened the possibility to discretize thespace for model checking.
So calledclock regionsare stored in data structures li#tigference bounded matrices
(DBMS) (4, 18) and are used in most model checking tools foetl automata like
KRONOS (46) and BPAAL (36).

12 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

3.4 Abstraction

Abstraction is a fundamental concept used in all formalfication methods. Ab-
stracting means replacing a concrete object with an atistrecwhich is more uni-
versal, and therefore, often has a simpler structure th&ordeA well-chosen ab-
straction simplifies as much as possible, without losingtaeh information about
the concrete object. Abstractions can be used in differagswduring the specifica-
tion and verification process:

¢ Building the system model: Every translation from a refd-tiystem or an in-
formal system description into a formal model is an absimact

e Optimizing the system model: Depending on the propertyithimt be checked,
different abstractions of the system model can be usefyl, by abstracting
from data, time, or continuous variables to obtain simpledsis.

e Reducing the complexity of model checking: Model-checkétsn use abstrac-
tions to minimize time and space usage, e.g., by introdugyngpolic states.

When abstracting a system model, often a so-caédfd abstractioris chosen:
Whenever a property holds for the abstract system, it alktstor the concrete sys-
tem. The converse, however, does not always hold, due tovreapproximation
which occurs in the abstraction process. A positive modelkckimg result on a
safe abstraction therefore means that the concrete syserfudills the property,
whereas a negative result can either mean that the congetérsis not correct or
that the abstraction is too coarse.

Thus, when getting a negative result, the counterexampieged by the model-
checker is examined to see if the error will also occur in theccete system. If it
doesn't, a finer abstraction has to be chosen.

3.5 Compositionality

Another important concept is compositionality. In a coniposal approach the sys-
tem model is split into components. Each component is thenifpd as a single
entity, and its correct behavior can be proved by model dngcK he specifications
of all components are then combined to get the global prgpéthe system model.
A prerequisite for this approach is that the behavior of trapgonents is completely
described by its specifications such that the behavior ofythbal system model
only depends on these specifications and not on any addifitfoamation about
the internal structure of the components.

The advantage of such an approach is obvious. Consider trepe at the
beginning of this section (20 automata, 10 local states)e@chompositional ap-
proach yields 20 applications of a model checking algorjteach of which involv-
ing only 10 states, whereas the global approach applies Insbhdeking once, but
on a set of 18 states. There is, however, some (often significant) overfaehe
decomposition of the system model and the constructionteaddamposition of the
local specifications.

Compositional Verification of Continuous-Discrete System 13

Section 4 discusses the compositional verification appreddch is subject of
our research project “Integrierte algorithmische und digla Verifikation verteil-
ter Steuerungssysteme fiir hybride Prozesse” (“Intedralgorithmic and deduc-
tive verification of distributed control systems for hybpdocesses”) in the DFG
KONDISK program.

4 Compositional Verification

4.1 The ldea

A compositional approach to verification aims at deducinmpprties of a system
from a local analysis of its constituent parts. Since eadisgstem, or module, is
dependent on inputs from its environment, this environmaurgt somehow be rep-
resented to carry out a local analysis. In the trivial cagenttodule’s behavior is
unchanged by the environment, whilst in the worst case tieegntions might be so
intensive that any useful analysis requires a representafithe environment that
is equivalent to the composed system.

However, in some domains of application, such as chemiogihegring, the
modules depend only on a few other modules and only via a fesvfate chan-
nels. In that case, a simplified representation of the enwilent will enable a less
complex local analysis. The problem is how to:

e obtain such a simplified representation and
e ensure that the local analyses do indeed allow deductiomst éve composed
system.

One approach is to compose the environment of a module andsitmplify it step
by step. This can be referred to @empositional minimizatianThe simplification
method must ensure the validity of the deduction, i.e., ebrescertain properties
with respect to composition.

In the next section some notation is introduced, afterwangsassumption/
commitment methods is presented followed by the formutetibtwo proof rule
paradigms. Finally, the approach is illustrated by an examp

4.2 Groundwork

Modules and Environments Consider a syster8 that can be divided into several
modulesor subsystems, working in parallel:

S=S§...[I%. (1)

The respectivenvironment Efor each modulé is the composition of the remain-
ing automata oS

E =S/l [SalISall--- 1S (@)

The behavior of a module can be represented by a discreteboidrautomators.
In order to specify that a module fulfills certain requirensgtwo formalisms exist:
properties and abstractions.

14 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Properties A property of an automaton can be specified in a temporal |fayic

mula. This provides a compact description of a requiremfeibtconcerns only a
certain aspect of the behavior of the automaton. Howevemdtas can become
very long and tedious to handle manually.

Abstractions If a requirement defines the set of desired behavior in anustive
manner, it may better be described by an automaton. In peattie desired behavior
of an automato§ can be specified a% by copying the automata while omitting all
undesired locations and states. The abstraction is deasgd< §, meaning that
any behavior of§ finds a matching representation within the specificaﬁon

Tableaux and Test Automata A subclass of temporal logic formulas, sufficiently
large for practical applications, can also be represenyealibtomata (12). The au-
tomatonT, representing a formule@ can be derived algorithmically bytableaux

construction. As a result, st automatoi§’ can be constructed in order to verify
an abstractioy < § using model checking. The test automaton contaiias atate
that is reachable i§ £ S so that

S||S" = —reachfail) = §=<S (3)

4.3 The Assumption/Commitment Paradigm

Consider the behavior of a modue Let

S lz(aiaci)v (4)

denote tha§ commits itself to fulfilling thecommitment cunder theassumption
a. The pair(a;,c;) is called amassumption/commitment-pg@/c-pair). A number
of alternative notations can be found in literature, €&)S(c;) (50).

The goal of the compositional analysis is to show that thepmsed systen$
fulfills a certain requirement corresponding to a global oatmentc. As an a/c-
pair, this is written aS|= (true,c). If Sis a system that depends on outside input,
e.g., human interaction, additional global assumpteabout the unspecified envi-
ronment ofS can be included:

Sk (ac). (5)

The a/c-method consists of finding local a/c-pdasc;) for each modules such
that the combination of the commitments fulfills the assuomsin such a way that
the conclusion (5) holds. A major problem results from that faat if the a/c-pairs
combine in a circular way, the conclusion is not valid unfesther knowledge is in-
cluded in the proof. Consider an example sys@mS, ||S, for which the following
holds:

|: (ala Cl)a Cl = a27 (6)
F(8,6), Cy=ay.

S
S

Compositional Verification of Continuous-Discrete System 15

Since for logical expressiorssandb
(a=b)A(b=a)=(anb)V(-aA-b), (7

it can only be deduced from (6) th&f andS, either both fulfill their commitments
ordon't:S|||S, [= (true, (c; ACy) V (-, A—Cy)).

If circularity occurs, it must be broken by including appriape additional con-
ditionsB. Temporal inductiorran be used to solve this problem (2): First, itis shown
that in its initial stateS, ||...||S, = a,,...,an. In the induction step it must be es-
tablished that given valid commitmentsno transition occurring in the system can
violate any of they, , ;. This relates to (7) as:

(agAbgAVkeN.(a = b) A(b =8 ,)) = (vke NaAb,) (8)

In summary, the aim of the assumption/commitment-paradégta combine a/c-
pairs(a;, ;) with additional conditions to the following proof rule:

S F(a,¢)

S = (an,cn)
B(ay,...,an,Cy,...,Cn,a,C)

SISl = (a,¢)

The selection of appropriate a/c-pairs is the creative ¢atle analyst and difficult
to automate. The following section describes how to autertta verification of
the individual a/c-pairs. Afterwards, two paradigms aresgnted that can provide
a starting set of a/c-pairs that can then be modified to seip#rticular application
(20).

(9)

Application using automata The a/c-pairs (4) can be verified automatically if they
are represented by automata. Bebe the automaton that represents the behaviors of
the environmer; fulfilling a; andC; be the automaton that represents all behaviors
of § that fulfill ¢;:

AZENA Y,
G=SAGFq. (10)

A, andC, can be obtained manually froBy andS,, or by using the tableau construc-
tion A =Ty, C = Te,. Then (4) is equivalent to

AllS 2 AlC. (1)

This inequality can be verified with a model checking toohgsa test automaton
construction (3).

16 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Chain Proof Rule In a chain rule form, which was used in the beginnings of a/c
reasoning (50), the assumption/commitment proof becoimgses and requires no
further additional logical conditions or explicit deduarii

58§

SIS, <SS,

SIS 18 4l1S < S11S 1
SEEENEEEEE)

12)

It can be interpreted in the following wa$l has to capture the behaworSlffor all
possible inputsS, has to simulaté, with the inputs fromS;, which is easier than
with all possible inputs. For the last modug only the behavior occurring under
the influence 081|| ||SrFl has to be taken into account.

The proof of (12) is straightforward and can be done by iteelt applying the
equations to their successors. This rule is simple, butarfdhowing sense, it can’t
be improved:

e Adding aternﬁ to both sides of one of the equations will destroy the soussine
unless further conditions are included.

e Removing a tern§ , ; will lead to a wider range of inputs th& will have to
cooperate with.

Let A denote an automaton modeling a global assumption as pdreafitial
conditions. The automa#y andC; become:

A=A A=S]...|§ fori>1,
C =S (13)

In order to reduce the complexity of the proof steps, theragsion can be widened,
i.e., forj <i anyéj can be dropped from both sides of (13) at any step. This haweve
might lead to an abstraction that is too wide and violatesafribe proof steps. If
the proof fails because the interactions of the modules @@ captured by the
abstractions in a chain sequence, the assumption shoulddbe more restrictive by
adding anys;, j > 1, to both sides of (13) at any step. This in turn will incredss t
complexity.

Circular Proof Rule The following proof rule, also referred to as Assume/Guaran
tee rule, has successfully been applied to small real-timdehgbrid systems (24).

Compositional Verification of Continuous-Discrete System 17

In order to verify thatS||...||S, meets the specificatior§|. .. ||S, the following
proof is carried out:

SIS 15 1l1S = SIS 1S
SIS NS IS = SISl -1

SIS 18 115 < SIS 15
B(S.....5S,....&)

SIS |- 1S allS = SIS 1S

Additional conditionsB are needed to avoid that the composition of the original
modules shows a behavior that can’t be met by more than ome @ftistractions, in
which case the proof would fail. Temporal induction can bpligga to accomplish
soundness of the proof (2).

With the following definition forA, andC,, the constituents of (14) can be ob-
tained from (11):

A =S8 a1l 1S,
c =S (15)

(14)

N
o M)

4.4 Example

The following example shall illustrate the above methodgld he delivery of raw

materials (educts) for a chemical batch process must baawtith the downstream
reactor schedule. In a decentralized control scheme, tlneedeschedule can be
set within certain limits that guarantee compatibility lwthe downstream recipe.
Once those limits are set, the downstream must in turn coasbhendelivered raw
materials in time.

Educt-Delivery S, Recipe-Controller S,

delivering
dx=1
x<3

educt_ready
x:=0

waiting
dx=1
x<1

draining
dt, dy=1
<1

educt_ready

Fig. 4. Automata for the delivery and the recipe controller

18 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Such a delivery schedulg, can be modeled by a timed automaton as shown
in Fig. 4. The delivery takes place at least every 3 min., Wiricthe automaton is
represented by the invariarnk 3 in the initial state, indicated by the double line.
When the educt is stored in a buffer tank, the delivery scleegrovides a signal,
represented by the labebluctready, to the controllers and remains in a waiting
state in order to give the recipe controller time to draintbéer tank. The guard
x =1 on the transition back to the initial state forces the auwtimm to wait exactly
1 min. before the next delivery can take place.

A second automatoS8, in Fig. 4 models the recipe controller. It remains in an
idle state until theeductreadysignal is issued. The controller then goes into the
statedraining in which the valves are open to drain the educt into the reaci®
avoid including a tank model, the draining process has bbetmacted by allowing
the controller to stay in the draining state at most 1 min.ictwlis assumed to be
the maximum time needed for draining. This is implementedgighe clocky that
is reset at the transition labeled wigductready. The invariany < 1 forces the au-
tomaton to leave the statrainingafter 1 min. at the latest and proceed to send the
emptysignal and return to the initial state. A clotkas been included to measure
the time that elapses between two consecugivgtysignals.

The requirement to be verified is whether the buffer tank iptéad at least once
every 4 min. In temporal logic, this can be represented asrardoment:

c,=vVO(t<4) (16)

The automaton representati@y corresponding ta@, is shown in Fig. 5 together
with the test automato®)] that is used to verif, ||S, < C, using a model checking
tool.

Commitment C, Test-Automaton C,

Fig. 5. Automata for representing and for testing the commitmenhefrecipe controller

In this example, a chain rule deduction is carried out. Btgnvith the require-
ment (16) it must be shown that

SIS, = (true.cy), (17

Compositional Verification of Continuous-Discrete System 19

From a local analysis d§, the assumption,, as represented in Fig. 6 was obtained
and it was verified that indees)}, = (a,,c,) using model checking by showing that
A,||S,||IC] [= —reach(fail). Finally it must be shown tha, fulfills the assumption

Assumption A4,

T
= Commitment C, Test-Automaton C,

x'<3
educt _ready
x':=0

educt_ready
x":=0

Fig. 6. Automata for representing and for testing the commitmetiefdelivery schedule

a,. To do so, the commitment &, is set equal t@, and it remains to provg, =
(true,c,). This is checked using the test automa@nfrom Fig. 6 to show that
S,/|C] | —reach(fail).

Finally, it can be deduced in either a/c or abstraction regmeation that the
requirement, holds also for the composed system:

S, - (true.cy) 5 <C,
S = (8,,¢,) AIS, =2 AIC,
C,=a C,=2A,

(18)

SIS E(tuecy)” SIS =CIC

45 Related Work

Since it is obvious that noncompositional methods will alesbe limited by the
state explosion problem, there is currently very activeaesh in the field of com-
positional verification. Tom Henzinger et al. use an assgoe-antee principle in
hierarchical hybrid system design which supports nestimgmllel and serial com-
position (25). Rajeev Alur et al. use the modeling languaga®oN for the modu-
lar design of interacting hybrid systems addressing difieaspects of hierarchy (1).
Ranijit Jhala and Ken McMillan employ compositional modedcking for the veri-
fication of a processor microarchitecture (31).

Henrik Ejersbo Jensen et al. have worked on compositignafitl abstraction
in the field of timed automata and presented several casiestusing the BPAAL
tool (29, 30).

20 R. Huuck, B. Lukoschus, G. Frehse, S. Engell
5 Conclusions

Formal verification completes the classical tools of sitiataand analysis of con-
trolled processes by providing a conservative and corraegtte analyze the func-
tioning of the system. The drawback of the existing meth@gsih their consump-
tion of either manual work or computational resources. Casitfpnal verification
methods reduce the costly step of model checking to the csitiquo of relatively
simple subsystems. This article summarized some of the ositignal approaches
to verification in literature and illustrated the methodshwan example. Present
approaches for model checking rely on the formalisms of diraelinear hybrid
automata. Techniques to approximate nonlinear hybriggysby linear hybrid au-
tomata are available, see e.g. (55). An application to a @&mprocess has shown
promising results (21).

Acknowledgements

This investigation was funded by the German Research Co{dieG) through the
grant EN152/29-1 and RO1122/7-1. The authors wish to thhakatriters of the
proposal, Yassine Lakhnech and Stefan Kowalewski.

References

1. R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. lvandV. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical hybrid modelingrobedded systems. In
T.A. Henzinger and C.M. Kirsch, editorEMSOFT 2001: First International Workshop
on Embedded Software, Tahoe City, CA, USA, October 8-10a, 200ume 2211 of
Lecture Notes in Computer Scienpages 14-31. Springer-Verlag, 2001.

2. Rajeev Alur and Thomas A. Henzinger. Reactive modukesmal Methods in System
Design: An International Journaftl5(1):7—-48, July 1999.

3. Krzysztof R. Apt, Nissim Francez, and Willem-Paul de RgevA proof system for
communicating sequential processé®CM Transactions on Programming Languages
and System<(3):359-385, 1980.

4. Richard BellmanDynamic ProgrammingPrinceton University Press, 1957.

5. J.A. Bergstra and J.W. Klop. Process algebra for synclu®oommunicationinforma-
tion and Contro} 60(1):109-137, 1984.

6. Girish Bhat, Rance Cleaveland, and Orna Grumberg. Effioile-the-fly model checking
for CTL*. In LICS "95: 10th Annual IEEE Symposium on Logic in Computeeiss,
San Diego, California, USA, June 26—-29, 19p&ges 388-397. IEEE Computer Society
Press, 1995.

7. Tommaso Bolognesi and Ed Brinksma. Introduction to th@ $pecification language
LOTOS. Computer Networksl4:25-59, 1987.

8. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory ofimanicating sequential
processesCommunications of the ACN81(3):560-599, 1984.

9. Randal E. Bryant. Graph-based algorithms for Booleawtfan manipulation. IEEE
Transactions on Computer€-35(8):677—691, August 1986.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Compositional Verification of Continuous-Discrete System 21

Randal E. Bryant. Symbolic Boolean manipulation witHesed binary-decision dia-
grams. ACM Computing Survey24(3):293-318, September 1992. Preprint version
published as CMU Technical Report CMU-CS-92-160.

Edmund M. Clarke and E. Allen Emerson. Design and syighefssynchronization
skeletons for branching time temporal logic. In Dexter Kazeditor, Logics of Pro-
grams Workshop, IBM Watson Research Center, Yorktown kKeigew York, May 1981
volume 131 ofLecture Notes in Computer Scienpages 52—71. Springer-Verlag, 1982.
Edmund M. Clarke, Orna Grumberg, and Doron A. Peldddel CheckingMIT Press,
1999.

Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolerd Mihalis Yannakakis.
Memory-efficient algorithms for the verification of tempbpaoperties Formal Methods

in System Desigri(2/3):275-288, 1992.

Willem-Paul de Roever. The need for compositional psysfems: A survey. In Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli, edi@wspositionality: The Sig-
nificant Difference, Proceedings of the International Sgaipm COMPOS '97, Malente,
Germany, September 7-12, 1998lume 1536 ol ecture Notes in Computer Science
pages 1-22. Springer-Verlag, 1998.

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemaluzef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwier€oncurrency Verification: Introduction to
Compositional and Noncompositional Method8lumber 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Pidggember 2001.

Edsger W. Dijkstra. On understanding programs (EWD .2B4iplished in an extended
version as (17), August 1969.

Edsger W. Dijkstra. Structured programming. In J.N. ®oxand B. Randell, editors,
Software Engineering Techniques, Report on a conferenmessped by the NATO Sci-
ence Committegoages 84—-88. NATO Science Committee, 1969.

David Dill. Timing assumptions and verification of firg&ate concurrent systems. In
Joseph Sifakis, editointernational Workshop on Automatic Verification Methods f
Finite State Systems, Grenoble, France, June 12-14,, 1@89me 407 ol_ecture Notes
in Computer Scien¢gages 197-212. Springer-Verlag, 1990.

Robert W. Floyd. Assighing meanings to programs. InSchwartz, editof?roceedings
AMS Symposium Applied Mathematieslume 19, pages 19-31, Providence, RI, 1967.
American Mathematical Society.

Goran Frehse, Olaf Stursberg, Sebastian Engell, Raitkjwand Ben Lukoschus. Mod-
ular analysis of discrete controllers for distributed hgtsystems. Irb '02: The XV.
IFAC World Congress, Barcelona, Spain, July 21-26, 2@0D2. To appear.

Goran F. Frehse, Olaf Stursberg, Sebastian EngellHRaitk, and Ben Lukoschus. Ver-
ification of hybrid controlled processing systems basedemochposition and deduction.
In ISIC 2001: 16th IEEE International Symposium on Intellig€ontrol, Mexico City,
Mexico, September 5-7, 200dages 150-155. IEEE Control Systems Society, IEEE
Press, 2001.

Herman H. Goldstein and John von Neumann. Planning atidgproblems of an elec-
tronic computing instrument. In A.H. Taub, editdr,von Neumann—Collected Works
pages 80-151. McMillan, New York, 1947.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a madecker for hybrid sys-
tems. International Journal on Software Tools for Technology nBger, 1:110-122,
1997.

T.A. Henzinger, S. Qadeer, S.K. Rajamani, and S. Tasivan assume, we guarantee:
Methodology and case studies.@AV '98: 10th International Conference on Computer-

22

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Aided Verificationvolume 1427 of_ecture Notes in Computer Scienpages 440-451.
Springer-Verlag, 1998.

Thomas A. Henzinger, Marius Minea, and Vinayak Prablasufne-guarantee reasoning
for hierarchical hybrid systems. HSCC '01: 4th International Workshop on Hybrid
Systems: Computation and Contreblume 2034 of_ecture Notes in Computer Science
pages 275-290. Springer-Verlag, 2001.

C.A.R. Hoare. An axiomatic basis for computer prograngniCommunications of the
ACM, 12(10):576-580, 583, October 1969.

C.A.R. Hoare.Communicating Sequential Processéxentice-Hall International, En-
gelwood Cliffs, 1985.

Gerard J. Holzmann. The model checker SPIIREE Transactions on Software Engi-
neering 23(5):279-295, May 1997.

Henrik Ejersbo JensenAbstraction-Based Verification of Distributed SystenhD
thesis, Aalborg University, June 1999.

Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and AkwelS Scaling up Uppaal —
automatic verification of real-time systems using compasality and abstraction. In
Mathai Joseph, editoFTRTFT 2000: 6th International Symposium on Formal Tech-
nigues in Real-Time and Fault-Tolerant Systems, Septe&@h&t2, 2000, Pune, Indja
volume 1926 of_ecture Notes in Computer Scienpages 19-30. Springer-Verlag, 2000.
Ranjit Jhala and Kenneth L. McMillan. Microarchite@uwerification by compositional
model checking. In G. Berry, H. Comon, and A. Finkel, edit@#V 2001: 13th Inter-
national Conference on Computer Aided Verification, Pafrsnce, July 18-22, 2001
volume 2102 ofLecture Notes in Computer Sciengages 396—410. Springer-Verlag,
2001.

Cliff B. Jones. Development Methods for Computer Programs including a dwiotf
Interference PhD thesis, Oxford University Computing Laboratory, Ja881. Printed
as: Programming Research Group, Technical Monograph 25.

Cliff B. Jones. Tentative steps toward a developmenhatefor interfering programs.
ACM Transactions on Programming Languages and Syst&(s596-619, 1983.

Saul A. Kripke. Semantical considerations on modaldogicta Philosophica Fennica
16:83-94, 1963.

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. Aroedta-theoretic approach
to branching-time model checkindournal of the ACM47(2):312-360, 2000.

Kim G. Larsen, Paul Pettersson, and Wang YipPRAL in a nutshell. International
Journal on Software Tools for Technology Transfigd—2):134—152, October 1997.
Gary M. Levin and David Gries. A proof technique for commmating sequential pro-
cessesActa Informatica 15(3):281-302, 1981.

O. Lichtenstein and A. Pnueli. Checking that finite stadacurrent programs satisfy
their linear specifications. Ifiwelfth ACM Symposium on the Priciples of Programming
Languagespages 97— 105, 1985.

Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem PhD thesis, Carnegie Mellon University, May 1992. CMU Trichl Report
CMU-CS-92-131.

Kenneth L. McMillan.The SMV systentCarnegie Mellon University, November 2000.
Manual for SMV version 2.5.4.

Stephan Merz. Model checking: A tutorial overview. IrCRassez et al., editokodel-
ing and Verification of Parallel Processeglume 2067 olLecture Notes in Computer
Sciencepages 3—-38. Springer-Verlag, 2001.

Robin Milner. A Calculus of Communicating Systemslume 92 ofLecture Notes in
Computer ScienceSpringer-Verlag, 1980.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Compositional Verification of Continuous-Discrete System 23

Robin Milner. Communication and ConcurrencyPrentice-Hall International, Engel-
wood Cliffs, 1989.

Jayadev Misra and K. Mani Chandy. Proofs of networks of@ssedEEE Transactions
on Software Engineering (4):417-426, July 1981.

Peter Naur. Proof of algorithms by general snapshBts. (Nordisk tidskrift for infor-
mationsbehandling)6(4):310-316, 1966.

A. Olivero and S. Yovine.KRONOS: A Tool for Verifying Real-Time Systems. User’s
Guide and Reference Manualerimag, Grenoble, France, 1993.

Susan S. Owicki and David Gries. An axiomatic proof téghe for parallel programs
I. Acta Informatica 6:319-340, 1976.

Amir Pnueli. The temporal logic of programs. Pnoceedings of the 18th IEEE Sympo-
sium on Foundations of Computer Science (FOCS 19¥0es 46-57, 1977.

Amir Pnueli. The temporal logic of concurrent prograffiseoretical Computer Science
13:45-60, 1981.

Amir Pnueli. In transition for global to modular templorgasoning about programs. In
Logics and Models of Concurrent Systemdume 13 ofNATO ASI-FE Springer-Verlag,
1984.

Jean-Pierre Queille and Joseph Sifakis. Specificatidrvarification of concurrent sys-
tems in CESAR. In M. Dezani-Ciancaglini and U. Montanarit@s, Proceedings of the
5th International Symposium on Programming, Turin, ApsiB61982 pages 337-350.
Springer-Verlag, 1982.

Wolfgang Reisig. Petri Nets, An Introduction EATCS, Monographs on Theoretical
Computer Science. Springer Verlag, Berlin, 1985.

Specification and Description Language SDL, blue boolCITT Recommendation
Z.100, 1992.

Karsten Stahl. Comparing the expressiveness of diffesal-time models. Master’s
thesis, Christian-Albrechts-University of Kiel, May 1998

Olaf Stursberg. Analysis of switched continuous systeased on discrete approxima-
tion. In ADPM 2000: 4th International Conference on Automation okédi Processes
pages 73-78, 2000.

Alan M. Turing. On checking a large routine. Report of a Conference on High Speed
Automatic Calculating Machingpages 67—69, Cambridge, 1949. University Mathemat-
ics Laboratory.

Moshe Y. Vardi and Pierre Wolper. Reasoning about ifioitmputationsinformation
and Computation115(1):1-37, 1994.

