
Compositional Verification of Continuous-Discrete
Systems

Ralf Huuck1, Ben Lukoschus1, Goran Frehse2, and Sebastian Engell2

1 University of Kiel, Institute of Computer Science and Applied Mathematics, Chair of
Software Technology, D-24098 Kiel, Germany,{rhu,bls}@informatik.uni-kiel.de

2 University of Dortmund, Process Control Lab (CT-AST), D-44221 Dortmund, Germany,
{g.frehse,s.engell}@ct.uni-dortmund.de

Abstract. Hybrid systems are well-suited as a design and modeling framework to describe
the interaction of discrete controllers with a continuous environment. However, the systems
described are often complex and so are the resulting models.Therefore, a formal framework
and a formal verification to prove the correctness of system properties is highly desirable.
Since complexity is inherent, standard formal verificationtechniques likemodel checking
soon reach their limits. In this work we present several options how to tackle the com-
plexity arising in the formal verification of hybrid systems. In particular we combine the
model checking approach withabstractionand decompositiontechniques such as theas-
sumption/commitmentmethod as well as deductive methods.

1 Introduction

The description of real-world physical systems has always been an issue. Such a
system model not only enhances the understanding of the underlying physics but it
makes it possible to actually predict the system’s behavior. Since nowadays nearly
every production, power generation, and logistics processis highly automated, such
a prediction is extremely valuable in order to simulate the system’s behavior in
different environments or even to prove that certain properties are satisfied.

However, every system model is by nature an abstraction of the real world. Find-
ing the right abstraction and, thus, developing the right system model is not an easy
task. In general the abstraction and, therefore, the model is chosen according to the
design level one is interested in. At times the detailed continuous physical behavior
is the focus of study and other times discrete behaviors suchas communication and
synchronization is of main interest.

Continuous models are used, e.g., to describe movements of mechanical sys-
tems, linear circuits or chemical reactions while discretemodels are sufficient to
describe the collision of two objects in a mechanical system, the switching in cir-
cuits or the use of pumps and valves in chemical plants. Continuous models are
generally given in the form of differential equations, possibly supplemented by a
set of algebraic constraints. In contrast, discrete modelsare more diverse but often
can be captured by some form of a state representation. Physical processes are con-
trolled by software on digital computers. Such embedded control systems combine
continuous physical behavior with discrete control algorithms and are calledhybrid
systems.

2 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

To model and to verify hybrid systems which describe the interaction of con-
trol software with a physical plant is a very desirable goal.However, it is not easy
to achieve since it requires a unified framework covering thecontinuous and dis-
crete world and a verification framework which is able to copewith such systems.
This is even more difficult when thinking of exhaustive verification that is as much
automated as possible. This means, from a formal system description and a set of
requirements the verification task can be left to a computer.Despite theoretical lim-
itations of this approach any verification technique has to cope with the immense
complexity that lies in the nature of such a system.

Then, why to use formal description methods and formal verification at all?
In the current design system processes some methods to enhance the quality of the
software and the overall system have already made their way into industrial standard
practice. These comprise techniques such as listing software requirements and striv-
ing for a clean documentation for the design process as well as code review, system
simulation and testing to check for the correctness of the implemented system.

However, techniques in common practice have various drawbacks.

• They often lack a formal basis. For instance, the specification is defined in nat-
ural language, which easily leads to misunderstanding and misinterpretation.

• The requirements are not complete, i.e., there are cases which are not taken
into account. Hence, parts of the system remain unspecified and, thus, are al-
lowed to behave differently than the designer had in mind. Especially without
a formal model it is more likely to forget cases, or cases which are defined in a
contradictory way remain undetected.

• The verification of the implementation might be approached in an unorganized
way. For instance, testing is done with some arbitrary inputs when it is more
efficient to choose data according to the boundary conditions of the model or
the implementation, simulation focuses on “non-important” variables and code
review neglects inter-procedural dependencies etc.

• Most informal techniques like testing or simulation are notexhaustive, i.e., the
they do not cover all program executions and thus give way to subtle but often
fatal flaws.

Formal methods promise to remedy the above mentioned weaknesses. However,
formal methods are not fool-proof by themselves. Sometimesthey require exhaus-
tive knowledge in mathematics, logics and the understanding of the system. More-
over, they do not a priori prevent forgetting about requirements or even ensure to
appropriately map the real world to the model. Especially insoftware design one
often has a clear idea of what to achieve, but much less of how to specify this for-
mally or even to define what is considered to be legal and what to be harmful. Formal
methods provide tools to further investigate into the design and verification process
and allow to enhance the quality of the system significantly,but they do not buy any
guarantee that what you prove is what you have in mind.

This work concentrates on applying formal methods to hybridsystems while at
the same time tackling the inherent complexity issues. The approach presented here
does not take the whole system at once into account, but divides the system and,

Compositional Verification of Continuous-Discrete Systems 3

hence, the verification task, into several components and several layers of abstrac-
tions. The division and verification of single components isknown ascompositional
verification.However, hybrid systems are often too complex and too interwoven
to find single components that can be verified independently of the remaining sys-
tems. It is much more natural to make someassumptionsabout the behavior of the
remaining system under which the selected component can be verified. The verifi-
cation of the component results into somecommitmentthis unit fulfills under the
given assumptions. Applying this method to every componentstill leaves the task to
combine the assumptions and commitments in a meaningful andnon-contradictive
way. In this work we present a framework which allows to reason in this so-called
assumption/commitment styleand supports a formal and automated verification as
far as possible.

We start with a brief overview on software verification and compositional tech-
niques in Section 1.1. In Section 2 an introduction into a standard formal verification
technique calledmodel checking(11, 51) is given. We explain the basic terms as
well as logics and techniques used. The subsequent Section 3deals with complexity
issues of formal verification and hybrid systems.

1.1 Historical Notes

This section gives a brief summary of the development of formal software verifica-
tion approaches in general and some important compositional methods in particular.
More extensive surveys can be found in (14, 15).

Formal Verification of Software From the beginnings of the computer age, ver-
ification of software has always been an issue for programmers and system devel-
opers. Pioneers like John von Neumann and Alan Turing already thought about the
correctness of programs for the first computers (22, 56).

In 1967 Robert W. Floyd presented theinductive assertion method(19), a formal
strategy to prove the correctness of sequential programs written as labeled transi-
tion systems. A similar approach was presented by Peter Naur(45) one year earlier.
C.A.R. Hoare axiomatized this method into a compositional style for sequential pro-
grams (26). Programs are annotated with assertions, and their correctness is proven
locally. Then the local assertions can be combined in a compositional fashion to
obtain a global specification.

This Hoare-style proof system was extended to concurrent shared-variable pro-
grams in 1976 by Susan S. Owicki and David Gries (47). Their method however
involves a so-calledinterference-freedom test,which operates on every combina-
tion of local control locations and therefore is non-compositional.

Proof systems for programs with distributed synchronous communication were
independently developed by Krzysztof R. Apt, Nissim Francez and Willem-Paul de
Roever (3) and by Gary M. Levin and David Gries (37). Here a so-calledcooper-
ation testis done for every combination of input and output actions, which is also
non-compositional.

4 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

In 1977 Amir Pnueli developed the temporal logic approach for the verification
of concurrent programs (48), for which he received the Turing Award in 1996. This
method is also non-compositional.

Compositional Approaches In 1969 Edsger W. Dijkstra was the first to publish
within the computer science community the opinion that compositional reasoning is
needed for the formal verification of large programs (16).

Cliff B. Jones developed a compositional verification approach for concurrent
shared-variable programs (32, 33). His so-calledrely-guaranteeformalism, which
specifies a system by its desired properties (guarantee) provided that its environment
behaves in a certain way (rely).

A similar compositional approach for distributed synchronous communication,
called theassumption-commitmentmethod, was presented by Jayadev Misra and K.
Mani Chandy in 1981 (44).

Within the field of process algebra – the main languages used include CCS (42,
43), CSP (8, 27), and ACP (5) – one has always been striving forcompositional
reasoning, e.g., by defining behavioral preorders which arepreserved by the com-
position operators.

2 Model Checking

Common to every verification task is to prove that a system, a program or simply an
abstract model of a problem satisfies certain requirements.Formally, this is denoted
by

M |= ϕ ,

whereM is a model of the system,ϕ is the requirement and|= denotes the satis-
faction relation. model checking (11, 51) is an algorithmicway to decide whether
M satisfiesϕ . Although any verification approach is based on this, the actual logic
or – more general – the formalism to denote these three items varies a lot. In the
following we present some formal models for each of them. We mainly focus on the
ones we will use throughout this work.

2.1 System Model

In this article we concentrate on verification ofreactive systems.These are systems
which communicate with their environment and may often – like operating systems
– not terminate. Hence, a model which captures their infinitebehavior in a concise
way is desirable. Simply specifying their input/output behavior is not sufficient, it is
rather interesting to know thestatesof a system, too.

Therefore, we start by describing the behavior of a system with some state-
based formalism. Such formalisms include Petri nets (52), CSP (8, 27), CCS (42,
43), different forms of automata, LOTOS (7), SDL (53), etc. In these formalisms the

Compositional Verification of Continuous-Discrete Systems 5

behavior of the system is described in terms of local state changes or events. The
global behavior of the system is given as the state-space generated from the system
description.

In this work we use different kinds of automata for the systemdescription,
namely discrete, timed and hybrid automata.

Discrete Automaton A discrete automatonA = (Q,q0,δ ,F) over an alphabetΣ
(events, actions) is a structure where

• Q is a finite set of control locations,
• q0 is an initial location,
• δ : Q×Σ −→ Q is a transition function, and
• F is an acceptance condition.

A sequence of actions inΣ which is produced by taking a path through the au-
tomaton, starting with the initial location and satisfyingthe acceptance condition,
is called aword. The set of all words, i.e., the set of all possible sequences,for an
automatonA is called thelanguageof A denoted byL(A). The acceptance condition
can vary from a single location which indicates the end of thesequence once it is
reached to a set of locations which have to be reached infinitely often. The accep-
tance condition mainly determines the different kinds of discrete automata which
can be found in the literature.

draining fillingdrain

drain

fill

fill

Fig. 1. Discrete automaton for a tank model

An example for a discrete automaton is depicted in Figure 1. This automaton
gives a rough model for a tank. There are two control locationsdrainingandfilling.
The double framed circle arounddraining indicates the initial location. Depending
on the actionsdrain andfill transitions depicted by arrows are taken. We do not give
an explicit acceptance condition here and note that the model is very simplified, i.e.,
it is not captured that the tank might run empty or might overflow.

Timed Automaton In contrast to discrete automata, the setting of timed automata
is in a dense real-time world. To express quantitative time,clocksare introduced
which are real-valued variables evolving over time. Moreover, they can be checked
against thresholds, and they can be reset when a transition is taken.

Formally, a timed automaton over an alphabetΣ is a quadrupleT = (Q,q0,C,E)
where

6 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

• Q is a finite set of locations,
• q0 is the initial location,
• C is a finite set of clocks, and
• E is a set of edges of the form(q,γ,a,ρ ,q′), whereq,q′ ∈ Q are the source and

target locations,γ is a transition condition, i.e., a Boolean formula over clock
variables and thresholds,a∈ Σ is an action andρ is the set of clocks that are
reset when taking this transition.

The language of a timed automata is given by the set of all execution sequences
over time. Traditionally, only infinite sequences are considered.

draining fillingdrain

drain

fill

fill

x>10 x:=0

x:=0x>10

x<=10x<=10

Fig. 2. Timed automaton for a tank model

A timed automaton example is depicted in Figure 2. In contrast to Figure 1 there
is a clockx which constraints the moments transitions are taken. This clock serves
as a timer for draining and filling periods. Starting from theinitial locationdraining
the location is changed only ifx is greater than 10. If so thex is reset and control will
reside in locationfilling until the clock value exceeds 10 again. In the meanwhile
self-loops are possible.

Hybrid Automaton Discrete automata do not incorporate quantitative time, but
timed automata do so by the use of clocks. However, they do notmodel arbitrary
continuous functions. This feature is covered by so-calledhybrid automata. These
allow do model and reason about a set of continuous variablesevolving over time.

Formally, a hybrid automatonH = (Q,q0,Var,E,Act, Inv) over an alphabetΣ
consists of

• a finite set of locationsQ with some initial locationq0,
• a finite set of real-valued variablesVar.
• a finite setE of discrete transitions. Each transitione = (q,ρ ,a,q′) between

two locationsq,q′ ∈ Q labeled by some actiona ∈ Σ depends on a transition
conditionρ which reasons about the variables inVar,

• a labeling functionAct that assigns a set of activities to each locationq ∈ Q.
The activities describe how the variables inVar evolve continuously as long as
control resides inq.

The semantics of an hybrid automaton is defined by all trajectories of the con-
tinuous variables as well as the actions over time.

Compositional Verification of Continuous-Discrete Systems 7

draining fillingdrain

drain

fill

fill
h>=0h>=0

dh=−2

h<=10

dh=1

h<=10

Fig. 3. Hybrid automaton for a tank model

A hybrid model for the tank example is shown in Figure 3. This model describes
the tank levelh in a filling and draining process. Draining is two times faster than
filling. Although possible, there are no guards or resets on the transitions, but in-
variants in the locations determine when exactly control isallowed to stay there.
Note that there also exist different timed automaton modelswith invariants, dead-
lines and urgency. Mostly this has little effect on the expressiveness (cf. (54)), but
allows more or less convenient notations.

2.2 Computational Model

In the previous section we described very briefly how to derive a behavior from each
description model. However, the models themselves are merely syntax and in order
to formally derive asemantics, i.e., the system’s behavior, the system description can
be mapped to a mathematical abstract representation. This abstract representation is
also calledcomputational modeland represents the semantics.

One way to describe a computational model is a state transition system. It con-
sists of states and and has also the ability to represent the fact that in any given state
the system reacts to certain actions and might enter new system states. This pair
of system states is then called atransition. The semantics of a system is then de-
termined by the sequences of all transitions in a system thatstart from some given
initial state. One formal way to describe these state transition systems areKripke
structures(34), named after the logician Saul A. Kripke who used transition systems
to define the semantics of modal logics. Transition systems are graphs consisting of
states, transitions and a function that maps each state to a set of properties which
hold in that state.

Formally, we define a Kripke structure as follows: Given a setof atomic prop-
ertiesP, also called propositions, a Kripke structureK = (S,S0,R,µ) contains the
following components:

• S is a set of states,
• S0 ⊆ S is a set of initial states,
• R⊆ S×S is a transition relation, which is required to be total, i.e., for every

states∈ S there exists ans′ ∈ Ssuch that(s,s′) ∈ S, and
• µ : S−→ 2P is a labeling function that assigns a set of propositions to every

state.

An execution sequence of a Kripke structure is defined as a possibly infinite
sequenceπ = s0s1s2 . . . such thats0 ∈ S0 and for every indexi > 0 in π we have

8 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

(si−1,si) ∈ R. This means starting from the initial state we go along a pathin the
graph represented by the Kripke structure. The semantics ofa system described by
a Kripke structure is the set of all its sequences, i.e., all possible paths from all initial
states.

In order to describe the semantics of a system model it is translated into such
a computational model first. This means, the system model represents the syntax
and the computational model the semantics. For the different types of automata pre-
sented above, the computational models are also different.While discrete automata
only have to reflect the control location in a state, timed andin particular hybrid
systems need to reflect time as well in a state. Since time is dense for both the
latter models, it is not always guaranteed to find a finite representation of these sys-
tems. However, using abstract or symbolic state representations, i.e., the clustering
of concrete states into equivalence classes, in many cases afinite representation is
possible also for timed and so calledlinear hybrid automata. The latter are hybrid
automata which only allow fixed (but arbitrary) rates for thecontinuous variables. A
finite representation is important in order to guarantee termination for algorithmic
approaches like model checking.

2.3 Temporal Logics

Describing the system formally is only one thing. For verification it is also neces-
sary to describe the requirements posed to a system in a formal style. There are
different ways to do so. One fundamental issue is to choose between an operational
or a declarative way. In this context operational means, e.g., using automata itself in
order to specify the desired properties. The advantage is that the same framework
for system modeling is also used to specify the system requirements. However, it is
often a bit tedious to formulate requirements as automata, and automata are some-
times not as easy to understand as requirements. The declarative way means using
logics to specify the requirements.

As mentioned before, we are mainly interested in reactive systems and, there-
fore, are concerned about the states of a system as well as thetransitions between
these states. Since basic propositional logic allows to reason about states only but
not sequences of states or transitions, so-calledtemporal logic(49) is used in order
to remedy this fact. Temporal logic extends propositional logic, i.e., Boolean propo-
sition with connectivities such as logical conjunction, disjunction and negation, with
modal operators. These are operators likealwaysor eventuallythat allow reasoning
over execution sequences and can be combined with the usual connectivities.

Let us define propositional logic first. Based on propositions p logical expres-
sions can be constructed by the following rules:

ϕ := p | ¬ϕ | ϕ1∧ϕ2

Other Boolean connectives like “∨”, “ ⇒”, and “⇔” can be derived from “¬” and
“∧” as usual.

Compositional Verification of Continuous-Discrete Systems 9

The semantics is straightforward and we is not shown here. Next, we present the
extension from propositional to temporal logic. In generalwe can define and dis-
tinguish between two main temporal sub-logics, namely, linear time and branching
time.

Linear Time Temporal Logic One way to describe requirements is to define de-
sired sequences in time. Linear Time Temporal Logic (LTL) allows to reason about
paths in computational models like Kripke structures. In order to do so, proposi-
tional logic is extended by the following basic modal operators:

• ©. This denotes the modality “next” and requires that a property holds in the
next state of a path, e.g., a pathπ in a Kripke structure satisfies©ϕ if and only
if ϕ is satisfied in the second state ofπ .

•
�

. This denotes the infix modality “until”. I.e., a pathπ in a Kripke structure
satisfies the expressionϕ

�
ψ if and only if ψ is satisfied in some later state

of π , andϕ holds in all states in between, including the first state ofπ . This is
meant by the expression “ϕ until ψ”.

LTL is founded on these basic modalities and their free combination with propo-
sitional logic. From these the following useful abbreviations can be defined:

• 3 means “eventually”, and a pathπ satisfies the expression3ϕ if and only if
there exists a state inπ which satisfiesϕ .

• 2 means “always”, and a pathπ satisfies2ϕ if and only if all states inπ satisfy
ϕ .

Branching Time Temporal Logic In contrast to LTL branching time logics do
not reason over single paths but over sets of paths, more precise, trees. One logic
which does so is called Computational Tree Logic (CTL) whichis propositional
logic extended bypath quantifiersandtemporal operators. The temporal operators
are the same as in LTL presented above. The path quantifiers are “∃” which requires
a single path to exist that satisfies some property and “∀” which requires all paths of
the computational model to satisfy some property.

CTL formulas are constructed from propositional logic, temporal operators and
path quantifiers in the following way: Every formula starts with a path quantifier,
every path quantifier is immediately followed by a temporal operator, and every
temporal operator is preceded by a path quantifier.

This allows to build formulas such as

• ∃2ϕ , which means that there exists a path where always, i.e, for all states,ϕ
holds, and

• ∃3∀2ϕ , which means there exist a path with a certain state from whereon for
all paths, i.e., branches,ϕ is always true.

10 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Remarks Note that CTL and LTL not only use different means to describesystem
properties, but in general there are LTL formulas which cannot represented in the
CTL framework, and vice versa. Moreover, while linear time appears to be concep-
tually simpler than branching time, the latter is often computationally more efficient.

For both types of logics there exist real-time extensions. This means the logics
provide the possibility to reason about explicit time and distances. We do not go into
detail here.

2.4 Tools and Limitations

Returning to the initial task of checkingM |= ϕ , model checking is, as mentioned,
an algorithmic (i.e., automatic) way to decide whether a model M satisfiesϕ or
not. There are several tools supporting model checking. Fordiscrete automata and
logics like CTL or LTL there are SMV (40) and SPIN (28) as the most prominent
ones. For checking timed automata with real-timed logics there are UPPAAL (36),
KRONOS (46) and extensions of SPIN. For linear hybrid systems HyTech (23) is a
tool that enables to check reachability of certain states ofthe corresponding linear
hybrid automaton. Moreover, there are many more tools whichare also based on
other system description models as well as logics.

For checking reactive systems one of the presented system models and logics
is often used. However, due to fundamental limitations not every model and every
logics is applicable for model checking. Timed and even morehybrid systems are
restricted to certain classes, since a finite state representation in whatever way has to
be guaranteed in order to keep model checking possible. Problem classes for which
there cannot be any general algorithmic solutions are called undecidable.

Despite of these basic fundamental restrictions model checking has also to cope
with serious complexity issues which are described in the next section.

3 Complexity Issues

One of the main drawbacks of state-based formal verificationmethods is the so-
called state explosion problem:When a large system consists of several smaller
components (e.g., automata) running in parallel, the number of global states in-
creases exponentially with the number of components. For instance, consider a sys-
tem of 20 automata working in parallel, each of which having 10 local states. This
amounts to 1020 global states. The simple task of enumerating these states on a
machine that needs only one nanosecond per state (which is considerably fast at
the time of writing) already takes over 3000 years. Buildingand searching a graph
based on these states takes significantly longer and is far beyond today’s memory
capabilities.

The state explosion problem is inherent in any system havingparallel structures
and poses a major complexity problem to any verification method based on the
exhaustive enumeration of global states. Several techniques have been developed to
minimize the impact of this problem on the time and memory consumption of the

Compositional Verification of Continuous-Discrete Systems 11

model checking process. Often a model checking algorithm uses a combination of
several such techniques, which are discussed in the following.

Note that although all these methods can result in a significant speedup in prac-
tice, they are limited by the worst case complexity inherentto the problem (35, 38,
57). E.g., model checking LTL or CTL properties for Kripke structures is polyno-
mial in nlogm wheren is the length of the formula andm is the size of the Kripke
structure. When it comes to concurrent programs, i.e, different automata composed
in parallel the problem is already PSPACE-complete even fora fixed formula. The
same holds for model checking real-time systems in a timed variant of CTL.

3.1 Global vs. Local Strategy

In accordance with the two parameters of the model checking problem, the model
M and the requirementϕ , there are two basic strategies when designing a model
checking algorithm, the “global” and the “local” strategy (41). “Global” means the
algorithm operates recursively on the structure ofϕ and evaluates each sub-formula
over the wholeM, while the local strategy checks only parts of the state space at a
time but for all sub-formulas ofϕ . The worst-case complexity of both approaches
is the same, however, the average behavior can differ significantly in practice. Tra-
ditionally, LTL model checking is based on local approacheswhile for CTL global
algorithms are applied.

3.2 “On-the-fly” Techniques

The classical model checking approach builds a complete state transition graph of
the system and performs a search on this graph. But often a large part of the graph
is not traversed during the search or is even unreachable from the initial state(s) of
the search. Therefore it is often a good idea to construct thegraph in an “on-the-
fly” fashion (6, 13). That is, only the part of the graph that iscurrently needed is
constructed during the search and kept in memory for later reuse, often supported
by caching algorithms.

3.3 Efficient Data Structures

A considerable amount of memory can be saved using efficient data structures dur-
ing the model checking process. One prominent example arebinary decision di-
agrams(BDDs) (9, 10), which are used as a compact representation ofBoolean
functions. Ken McMillan suggested in his PhD thesis (39) to use them for model
checking, and today BDDs and similar data structures are thekey solution for effi-
cient memory usage in many kinds of computation software.

In the field of timed automata the observation that despite their continuous na-
ture, clocks are often compared only to each other and a finiteand bounded number
of constants, opened the possibility to discretize the state space for model checking.
So calledclock regionsare stored in data structures likedifference bounded matrices
(DBMs) (4, 18) and are used in most model checking tools for timed automata like
KRONOS (46) and UPPAAL (36).

12 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

3.4 Abstraction

Abstraction is a fundamental concept used in all formal verification methods. Ab-
stracting means replacing a concrete object with an abstract one which is more uni-
versal, and therefore, often has a simpler structure than before. A well-chosen ab-
straction simplifies as much as possible, without losing toomuch information about
the concrete object. Abstractions can be used in different ways during the specifica-
tion and verification process:

• Building the system model: Every translation from a real-life system or an in-
formal system description into a formal model is an abstraction.

• Optimizing the system model: Depending on the property thatis to be checked,
different abstractions of the system model can be useful, e.g., by abstracting
from data, time, or continuous variables to obtain simpler models.

• Reducing the complexity of model checking: Model-checkersoften use abstrac-
tions to minimize time and space usage, e.g., by introducingsymbolic states.

When abstracting a system model, often a so-calledsafe abstractionis chosen:
Whenever a property holds for the abstract system, it also holds for the concrete sys-
tem. The converse, however, does not always hold, due to the over-approximation
which occurs in the abstraction process. A positive model checking result on a
safe abstraction therefore means that the concrete system also fulfills the property,
whereas a negative result can either mean that the concrete system is not correct or
that the abstraction is too coarse.

Thus, when getting a negative result, the counterexample provided by the model-
checker is examined to see if the error will also occur in the concrete system. If it
doesn’t, a finer abstraction has to be chosen.

3.5 Compositionality

Another important concept is compositionality. In a compositional approach the sys-
tem model is split into components. Each component is then specified as a single
entity, and its correct behavior can be proved by model checking. The specifications
of all components are then combined to get the global property of the system model.
A prerequisite for this approach is that the behavior of the components is completely
described by its specifications such that the behavior of theglobal system model
only depends on these specifications and not on any additional information about
the internal structure of the components.

The advantage of such an approach is obvious. Consider the example at the
beginning of this section (20 automata, 10 local states each). A compositional ap-
proach yields 20 applications of a model checking algorithm, each of which involv-
ing only 10 states, whereas the global approach applies model checking once, but
on a set of 1020 states. There is, however, some (often significant) overhead for the
decomposition of the system model and the construction and the composition of the
local specifications.

Compositional Verification of Continuous-Discrete Systems 13

Section 4 discusses the compositional verification approach which is subject of
our research project “Integrierte algorithmische und deduktive Verifikation verteil-
ter Steuerungssysteme für hybride Prozesse” (“Integrated algorithmic and deduc-
tive verification of distributed control systems for hybridprocesses”) in the DFG
KONDISK program.

4 Compositional Verification

4.1 The Idea

A compositional approach to verification aims at deducing properties of a system
from a local analysis of its constituent parts. Since each subsystem, or module, is
dependent on inputs from its environment, this environmentmust somehow be rep-
resented to carry out a local analysis. In the trivial case the module’s behavior is
unchanged by the environment, whilst in the worst case the interactions might be so
intensive that any useful analysis requires a representation of the environment that
is equivalent to the composed system.

However, in some domains of application, such as chemical engineering, the
modules depend only on a few other modules and only via a few interface chan-
nels. In that case, a simplified representation of the environment will enable a less
complex local analysis. The problem is how to:

• obtain such a simplified representation and
• ensure that the local analyses do indeed allow deductions about the composed

system.

One approach is to compose the environment of a module and then simplify it step
by step. This can be referred to ascompositional minimization. The simplification
method must ensure the validity of the deduction, i.e., conserve certain properties
with respect to composition.

In the next section some notation is introduced, afterwardsthe assumption/
commitment methods is presented followed by the formulation of two proof rule
paradigms. Finally, the approach is illustrated by an example.

4.2 Groundwork

Modules and Environments Consider a systemS that can be divided into several
modules, or subsystems, working in parallel:

S= S1|| . . . ||Sn. (1)

The respectiveenvironment Ei for each moduleSi is the composition of the remain-
ing automata ofS:

Ei = S1|| . . . ||Si−1||Si+1|| . . . ||Sn. (2)

The behavior of a module can be represented by a discrete or hybrid automatonS.
In order to specify that a module fulfills certain requirements, two formalisms exist:
properties and abstractions.

14 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Properties A property of an automaton can be specified in a temporal logicfor-
mula. This provides a compact description of a requirement if it concerns only a
certain aspect of the behavior of the automaton. However, formulas can become
very long and tedious to handle manually.

Abstractions If a requirement defines the set of desired behavior in an exhaustive
manner, it may better be described by an automaton. In practice, the desired behavior
of an automatonSi can be specified aŝSi by copying the automata while omitting all
undesired locations and states. The abstraction is denotedasSi � Ŝi , meaning that
any behavior ofSi finds a matching representation within the specificationŜi.

Tableaux and Test Automata A subclass of temporal logic formulas, sufficiently
large for practical applications, can also be represented by automata (12). The au-
tomatonTφ representing a formulaφ can be derived algorithmically by atableaux

construction. As a result, atest automaton̂ST
i can be constructed in order to verify

an abstractionSi � Ŝi using model checking. The test automaton contains afail state
that is reachable ifSi � Ŝi so that

Si ||Ŝ
T
i |= ¬reach(fail) ⇒ Si � Ŝ. (3)

4.3 The Assumption/Commitment Paradigm

Consider the behavior of a moduleSi. Let

Si |= (ai ,ci), (4)

denote thatSi commits itself to fulfilling thecommitment ci under theassumption
ai . The pair(ai ,ci) is called anassumption/commitment-pair(a/c-pair). A number
of alternative notations can be found in literature, e.g.,〈ai〉Si〈ci〉 (50).

The goal of the compositional analysis is to show that the composed systemS
fulfills a certain requirement corresponding to a global commitmentc. As an a/c-
pair, this is written asS|= (true,c). If S is a system that depends on outside input,
e.g., human interaction, additional global assumptionsa about the unspecified envi-
ronment ofScan be included:

S|= (a,c). (5)

The a/c-method consists of finding local a/c-pairs(ai ,ci) for each moduleSi such
that the combination of the commitments fulfills the assumptions in such a way that
the conclusion (5) holds. A major problem results from the fact that if the a/c-pairs
combine in a circular way, the conclusion is not valid unlessfurther knowledge is in-
cluded in the proof. Consider an example systemS= S1||S2 for which the following
holds:

S1 |= (a1,c1), c1 ⇒ a2,

S2 |= (a2,c2), c2 ⇒ a1.
(6)

Compositional Verification of Continuous-Discrete Systems 15

Since for logical expressionsa andb

(a⇒ b)∧ (b⇒ a) ≡ (a∧b)∨ (¬a∧¬b), (7)

it can only be deduced from (6) thatS1 andS2 either both fulfill their commitments
or don’t:S1||S2 |=

(

true,(c1∧c2)∨ (¬c1∧¬c2)
)

.
If circularity occurs, it must be broken by including appropriate additional con-

ditionsB. Temporal inductioncan be used to solve this problem (2): First, it is shown
that in its initial stateS1|| . . . ||Sn |= a1, . . . ,an. In the induction step it must be es-
tablished that given valid commitmentsci no transition occurring in the system can
violate any of theai+1. This relates to (7) as:

(

a0∧b0∧∀k∈ N.(ak ⇒ bk+1)∧ (bk ⇒ ak+1)
)

⇒
(

∀k∈ N.ak∧bk

)

(8)

In summary, the aim of the assumption/commitment-paradigmis to combine a/c-
pairs(ai ,ci) with additional conditionsB to the following proof rule:

S1 |= (a1,c1)
...

Sn |= (an,cn)
B(a1, . . . ,an,c1, . . . ,cn,a,c)

S1||S2|| . . . ||Sn |= (a,c)
. (9)

The selection of appropriate a/c-pairs is the creative taskof the analyst and difficult
to automate. The following section describes how to automate the verification of
the individual a/c-pairs. Afterwards, two paradigms are presented that can provide
a starting set of a/c-pairs that can then be modified to suit the particular application
(20).

Application using automata The a/c-pairs (4) can be verified automatically if they
are represented by automata. LetAi be the automaton that represents the behaviors of
the environmentEi fulfilling ai andCi be the automaton that represents all behaviors
of Si that fulfill ci :

Ai � Ei ∧ Ai |= ai ,

Ci � Si ∧ Ci |= ci . (10)

Ai andCi can be obtained manually fromEi andSi , or by using the tableau construc-
tion Ai = Tai

,Ci = Tci
. Then (4) is equivalent to

Ai ||Si � Ai ||Ci . (11)

This inequality can be verified with a model checking tool using a test automaton
construction (3).

16 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Chain Proof Rule In a chain rule form, which was used in the beginnings of a/c
reasoning (50), the assumption/commitment proof becomes simple and requires no
further additional logical conditions or explicit deduction:

S1 � Ŝ1
Ŝ1||S2 � Ŝ1||Ŝ2

...
Ŝ1||Ŝ2|| . . . ||Ŝn−1||Sn � Ŝ1||Ŝ2|| . . . ||Ŝn

S1||S2|| . . . ||Sn−1||Sn � Ŝ1||Ŝ2|| . . . ||Ŝn
. (12)

It can be interpreted in the following way:Ŝ1 has to capture the behavior ofS1 for all
possible inputs.̂S2 has to simulateS2 with the inputs fromŜ1, which is easier than
with all possible inputs. For the last moduleŜn, only the behavior occurring under
the influence of̂S1|| . . . ||Ŝn−1 has to be taken into account.

The proof of (12) is straightforward and can be done by iteratively applying the
equations to their successors. This rule is simple, but in the following sense, it can’t
be improved:

• Adding a termŜi to both sides of one of the equations will destroy the soundness
unless further conditions are included.

• Removing a term̂Si+1 will lead to a wider range of inputs thatSi will have to
cooperate with.

Let A denote an automaton modeling a global assumption as part of the initial
conditions. The automataAi andCi become:

A1 = A, Ai = Ŝ1|| . . . ||Ŝi−1 for i > 1,

Ci � Ŝi . (13)

In order to reduce the complexity of the proof steps, the assumption can be widened,
i.e., for j < i anyŜj can be dropped from both sides of (13) at any step. This however
might lead to an abstraction that is too wide and violates oneof the proof steps. If
the proof fails because the interactions of the modules cannot be captured by the
abstractions in a chain sequence, the assumption should be made more restrictive by
adding anySj , j > i, to both sides of (13) at any step. This in turn will increase the
complexity.

Circular Proof Rule The following proof rule, also referred to as Assume/Guaran-
tee rule, has successfully been applied to small real-time and hybrid systems (24).

Compositional Verification of Continuous-Discrete Systems 17

In order to verify thatSi || . . . ||Sn meets the specificationŝSi || . . . ||Ŝn the following
proof is carried out:

S1||Ŝ2|| . . . ||Ŝn−1||Ŝn � Ŝ1||Ŝ2|| . . . ||Ŝn

Ŝ1||S2|| . . . ||Ŝn−1||Ŝn � Ŝ1||Ŝ2|| . . . ||Ŝn
...

Ŝ1||Ŝ2|| . . . ||Ŝn−1||Sn � Ŝ1||Ŝ2|| . . . ||Ŝn

B(S1, . . . ,Sn, Ŝ1, . . . , Ŝn)

S1||S2|| . . . ||Sn−1||Sn � Ŝ1||Ŝ2|| . . . ||Ŝn
. (14)

Additional conditionsB are needed to avoid that the composition of the original
modules shows a behavior that can’t be met by more than one of the abstractions, in
which case the proof would fail. Temporal induction can be applied to accomplish
soundness of the proof (2).

With the following definition forAi andCi , the constituents of (14) can be ob-
tained from (11):

Ai = Ŝ1|| . . . ||Ŝi−1||Ŝi+1|| . . . ||Ŝn,

Ci � Ŝi . (15)

4.4 Example

The following example shall illustrate the above methodology. The delivery of raw
materials (educts) for a chemical batch process must be in tune with the downstream
reactor schedule. In a decentralized control scheme, the delivery schedule can be
set within certain limits that guarantee compatibility with the downstream recipe.
Once those limits are set, the downstream must in turn consume the delivered raw
materials in time.

educt_ready

empty
t =: 0

idle
dt, dy = 1

draining
dt, dy

y

= 1

1£

Recipe-Controller S2

educt_ready
x =: 0

x = 1

delivering
dx
x

= 1

< 3

waiting
dx

x

= 1

1£

Educt-Delivery S1

educt_ready
y =: 0

Fig. 4. Automata for the delivery and the recipe controller

18 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Such a delivery scheduleS1 can be modeled by a timed automaton as shown
in Fig. 4. The delivery takes place at least every 3 min., which in the automaton is
represented by the invariantx < 3 in the initial state, indicated by the double line.
When the educt is stored in a buffer tank, the delivery schedule provides a signal,
represented by the labeleduct ready, to the controllers and remains in a waiting
state in order to give the recipe controller time to drain thebuffer tank. The guard
x = 1 on the transition back to the initial state forces the automaton to wait exactly
1 min. before the next delivery can take place.

A second automatonS2 in Fig. 4 models the recipe controller. It remains in an
idle state until theeduct readysignal is issued. The controller then goes into the
statedraining in which the valves are open to drain the educt into the reactors. To
avoid including a tank model, the draining process has been abstracted by allowing
the controller to stay in the draining state at most 1 min., which is assumed to be
the maximum time needed for draining. This is implemented using the clocky that
is reset at the transition labeled witheduct ready. The invarianty≤ 1 forces the au-
tomaton to leave the statedrainingafter 1 min. at the latest and proceed to send the
emptysignal and return to the initial state. A clockt has been included to measure
the time that elapses between two consecutiveemptysignals.

The requirement to be verified is whether the buffer tank is emptied at least once
every 4 min. In temporal logic, this can be represented as a commitment:

c2 = ∀2(t < 4) (16)

The automaton representationC2 corresponding toc2 is shown in Fig. 5 together
with the test automatonCT

2 that is used to verifyS1||S2 �C2 using a model checking
tool.

fail
dt' = 1

r_or_d
dt' = 1

Test-Automaton C2

T

empty
t' =: 0

r_or_d
dt'
t'

= 1

< 4

Commitment C2

t' ³ 4empty

t' =: 0

t' < 4

Fig. 5. Automata for representing and for testing the commitment ofthe recipe controller

In this example, a chain rule deduction is carried out. Starting with the require-
ment (16) it must be shown that

S1||S2 |= (true,c2), (17)

Compositional Verification of Continuous-Discrete Systems 19

From a local analysis ofS2 the assumptiona2 as represented in Fig. 6 was obtained
and it was verified that indeedS2 |= (a2,c2) using model checking by showing that
A2||S2||C

T
2 |= ¬reach(f ail). Finally it must be shown thatS1 fulfills the assumption

d_or_w
dx'
x'

= 1

< 3

Assumption A2

= CCommitment 1

educt_ready
x' =: 0

x' 3³

fail
dx' = 1

x'
educt_ready

< 3

x' =: 0

d_or_w
dx' = 1

Test-Automaton C1

T

Fig. 6. Automata for representing and for testing the commitment ofthe delivery schedule

a2. To do so, the commitment ofS1 is set equal toa2 and it remains to proveS1 |=
(true,c1). This is checked using the test automatonCT

1 from Fig. 6 to show that
S1||C

T
1 |= ¬reach(f ail).

Finally, it can be deduced in either a/c or abstraction representation that the
requirementc2 holds also for the composed system:

S1 |= (true,c1)
S2 |= (a2,c2)
c1 = a2

S1||S2 |= (true,c2)
,

S1 �C1
A2||S2 � A2||C2

C1 � A2

S1||S2 �C1||C2
. (18)

4.5 Related Work

Since it is obvious that noncompositional methods will always be limited by the
state explosion problem, there is currently very active research in the field of com-
positional verification. Tom Henzinger et al. use an assume-guarantee principle in
hierarchical hybrid system design which supports nesting of parallel and serial com-
position (25). Rajeev Alur et al. use the modeling language CHARON for the modu-
lar design of interacting hybrid systems addressing different aspects of hierarchy (1).
Ranjit Jhala and Ken McMillan employ compositional model checking for the veri-
fication of a processor microarchitecture (31).

Henrik Ejersbo Jensen et al. have worked on compositionality and abstraction
in the field of timed automata and presented several case studies using the UPPAAL

tool (29, 30).

20 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

5 Conclusions

Formal verification completes the classical tools of simulation and analysis of con-
trolled processes by providing a conservative and correct way to analyze the func-
tioning of the system. The drawback of the existing methods lies in their consump-
tion of either manual work or computational resources. Compositional verification
methods reduce the costly step of model checking to the composition of relatively
simple subsystems. This article summarized some of the compositional approaches
to verification in literature and illustrated the methods with an example. Present
approaches for model checking rely on the formalisms of timed or linear hybrid
automata. Techniques to approximate nonlinear hybrid systems by linear hybrid au-
tomata are available, see e.g. (55). An application to a chemical process has shown
promising results (21).

Acknowledgements

This investigation was funded by the German Research Council (DFG) through the
grant EN152/29-1 and RO1122/7-1. The authors wish to thank the writers of the
proposal, Yassine Lakhnech and Stefan Kowalewski.

References

1. R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivanĉić, V. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling ofembedded systems. In
T.A. Henzinger and C.M. Kirsch, editors,EMSOFT 2001: First International Workshop
on Embedded Software, Tahoe City, CA, USA, October 8–10, 2001, volume 2211 of
Lecture Notes in Computer Science, pages 14–31. Springer-Verlag, 2001.

2. Rajeev Alur and Thomas A. Henzinger. Reactive modules.Formal Methods in System
Design: An International Journal, 15(1):7–48, July 1999.

3. Krzysztof R. Apt, Nissim Francez, and Willem-Paul de Roever. A proof system for
communicating sequential processes.ACM Transactions on Programming Languages
and Systems, 2(3):359–385, 1980.

4. Richard Bellman.Dynamic Programming. Princeton University Press, 1957.
5. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.Informa-

tion and Control, 60(1):109–137, 1984.
6. Girish Bhat, Rance Cleaveland, and Orna Grumberg. Efficient on-the-fly model checking

for CTL∗. In LICS ’95: 10th Annual IEEE Symposium on Logic in Computer Science,
San Diego, California, USA, June 26–29, 1995, pages 388–397. IEEE Computer Society
Press, 1995.

7. Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14:25–59, 1987.

8. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes.Communications of the ACM, 31(3):560–599, 1984.

9. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

Compositional Verification of Continuous-Discrete Systems 21

10. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318, September 1992. Preprint version
published as CMU Technical Report CMU-CS-92-160.

11. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons for branching time temporal logic. In Dexter Kozen, editor,Logics of Pro-
grams Workshop, IBM Watson Research Center, Yorktown Heights, New York, May 1981,
volume 131 ofLecture Notes in Computer Science, pages 52–71. Springer-Verlag, 1982.

12. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. MIT Press,
1999.

13. Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.
Memory-efficient algorithms for the verification of temporal properties.Formal Methods
in System Design, 1(2/3):275–288, 1992.

14. Willem-Paul de Roever. The need for compositional proofsystems: A survey. In Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli, editors,Compositionality: The Sig-
nificant Difference, Proceedings of the International Symposium COMPOS ’97, Malente,
Germany, September 7–12, 1997, volume 1536 ofLecture Notes in Computer Science,
pages 1–22. Springer-Verlag, 1998.

15. Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann,Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers.Concurrency Verification: Introduction to
Compositional and Noncompositional Methods. Number 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, November 2001.

16. Edsger W. Dijkstra. On understanding programs (EWD 264). Published in an extended
version as (17), August 1969.

17. Edsger W. Dijkstra. Structured programming. In J.N. Buxton and B. Randell, editors,
Software Engineering Techniques, Report on a conference sponsored by the NATO Sci-
ence Committee, pages 84–88. NATO Science Committee, 1969.

18. David Dill. Timing assumptions and verification of finite-state concurrent systems. In
Joseph Sifakis, editor,International Workshop on Automatic Verification Methods for
Finite State Systems, Grenoble, France, June 12–14, 1989, volume 407 ofLecture Notes
in Computer Science, pages 197–212. Springer-Verlag, 1990.

19. Robert W. Floyd. Assigning meanings to programs. In J.T.Schwartz, editor,Proceedings
AMS Symposium Applied Mathematics, volume 19, pages 19–31, Providence, RI, 1967.
American Mathematical Society.

20. Goran Frehse, Olaf Stursberg, Sebastian Engell, Ralf Huuck, and Ben Lukoschus. Mod-
ular analysis of discrete controllers for distributed hybrid systems. Inb ’02: The XV.
IFAC World Congress, Barcelona, Spain, July 21–26, 2002, 2002. To appear.

21. Goran F. Frehse, Olaf Stursberg, Sebastian Engell, RalfHuuck, and Ben Lukoschus. Ver-
ification of hybrid controlled processing systems based on decomposition and deduction.
In ISIC 2001: 16th IEEE International Symposium on Intelligent Control, Mexico City,
Mexico, September 5–7, 2001, pages 150–155. IEEE Control Systems Society, IEEE
Press, 2001.

22. Herman H. Goldstein and John von Neumann. Planning and coding problems of an elec-
tronic computing instrument. In A.H. Taub, editor,J. von Neumann—Collected Works,
pages 80–151. McMillan, New York, 1947.

23. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model checker for hybrid sys-
tems. International Journal on Software Tools for Technology Transfer, 1:110–122,
1997.

24. T.A. Henzinger, S. Qadeer, S.K. Rajamani, and S. Tasiran. You assume, we guarantee:
Methodology and case studies. InCAV ’98: 10th International Conference on Computer-

22 R. Huuck, B. Lukoschus, G. Frehse, S. Engell

Aided Verification, volume 1427 ofLecture Notes in Computer Science, pages 440–451.
Springer-Verlag, 1998.

25. Thomas A. Henzinger, Marius Minea, and Vinayak Prabhu. Assume-guarantee reasoning
for hierarchical hybrid systems. InHSCC ’01: 4th International Workshop on Hybrid
Systems: Computation and Control, volume 2034 ofLecture Notes in Computer Science,
pages 275–290. Springer-Verlag, 2001.

26. C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 583, October 1969.

27. C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall International, En-
gelwood Cliffs, 1985.

28. Gerard J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

29. Henrik Ejersbo Jensen.Abstraction-Based Verification of Distributed Systems. PhD
thesis, Aalborg University, June 1999.

30. Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou. Scaling up Uppaal –
automatic verification of real-time systems using compositionality and abstraction. In
Mathai Joseph, editor,FTRTFT 2000: 6th International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, September20–22, 2000, Pune, India,
volume 1926 ofLecture Notes in Computer Science, pages 19–30. Springer-Verlag, 2000.

31. Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by compositional
model checking. In G. Berry, H. Comon, and A. Finkel, editors, CAV 2001: 13th Inter-
national Conference on Computer Aided Verification, Paris,France, July 18–22, 2001,
volume 2102 ofLecture Notes in Computer Science, pages 396–410. Springer-Verlag,
2001.

32. Cliff B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University Computing Laboratory, June1981. Printed
as: Programming Research Group, Technical Monograph 25.

33. Cliff B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

34. Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16:83–94, 1963.

35. Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach
to branching-time model checking.Journal of the ACM, 47(2):312–360, 2000.

36. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

37. Gary M. Levin and David Gries. A proof technique for communicating sequential pro-
cesses.Acta Informatica, 15(3):281–302, 1981.

38. O. Lichtenstein and A. Pnueli. Checking that finite stateconcurrent programs satisfy
their linear specifications. InTwelfth ACM Symposium on the Priciples of Programming
Languages, pages 97– 105, 1985.

39. Kenneth L. McMillan.Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, May 1992. CMU Technical Report
CMU-CS-92-131.

40. Kenneth L. McMillan.The SMV system. Carnegie Mellon University, November 2000.
Manual for SMV version 2.5.4.

41. Stephan Merz. Model checking: A tutorial overview. In F.Cassez et al., editor,Model-
ing and Verification of Parallel Processes, volume 2067 ofLecture Notes in Computer
Science, pages 3–38. Springer-Verlag, 2001.

42. Robin Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in
Computer Science. Springer-Verlag, 1980.

Compositional Verification of Continuous-Discrete Systems 23

43. Robin Milner. Communication and Concurrency. Prentice-Hall International, Engel-
wood Cliffs, 1989.

44. Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE Transactions
on Software Engineering, 7(4):417–426, July 1981.

45. Peter Naur. Proof of algorithms by general snapshots.BIT (Nordisk tidskrift for infor-
mationsbehandling), 6(4):310–316, 1966.

46. A. Olivero and S. Yovine.KRONOS: A Tool for Verifying Real-Time Systems. User’s
Guide and Reference Manual. Verimag, Grenoble, France, 1993.

47. Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6:319–340, 1976.

48. Amir Pnueli. The temporal logic of programs. InProceedings of the 18th IEEE Sympo-
sium on Foundations of Computer Science (FOCS 1977), pages 46–57, 1977.

49. Amir Pnueli. The temporal logic of concurrent programs.Theoretical Computer Science,
13:45–60, 1981.

50. Amir Pnueli. In transition for global to modular temporal reasoning about programs. In
Logics and Models of Concurrent Systems, volume 13 ofNATO ASI-F. Springer-Verlag,
1984.

51. Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,Proceedings of the
5th International Symposium on Programming, Turin, April 6–8, 1982, pages 337–350.
Springer-Verlag, 1982.

52. Wolfgang Reisig. Petri Nets, An Introduction. EATCS, Monographs on Theoretical
Computer Science. Springer Verlag, Berlin, 1985.

53. Specification and Description Language SDL, blue book. CCITT Recommendation
Z.100, 1992.

54. Karsten Stahl. Comparing the expressiveness of different real-time models. Master’s
thesis, Christian-Albrechts-University of Kiel, May 1998.

55. Olaf Stursberg. Analysis of switched continuous systems based on discrete approxima-
tion. In ADPM 2000: 4th International Conference on Automation of Mixed Processes,
pages 73–78, 2000.

56. Alan M. Turing. On checking a large routine. InReport of a Conference on High Speed
Automatic Calculating Machines, pages 67–69, Cambridge, 1949. University Mathemat-
ics Laboratory.

57. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.Information
and Computation, 115(1):1–37, 1994.

