
Proceedings of the 2001 IEEE International Symposium on Intelligent Control (ISIC 2001), Mexico City, September 5–7, 2001, p. 150–155
(invited session on “Hybrid Systems in Process Control” organized by N. Rakoto-Ravalontsalama and M.D. Lemmon)

Verification of Hybrid Controlled
Processing Systems based on
Decomposition and Deduction

Goran Frehse1, Olaf Stursberg1, Sebastian Engell1,

Ralf Huuck2, Ben Lukoschus2,3

1 Process Control Lab (CT-AST), University of Dortmund,
D-44221 Dortmund (Germany), {g.frehse,o.stursberg,s.engell}@ct.uni-dortmund.de

2 Chair of Software Technology, Institute of Computer Science and Applied Mathematics,
University of Kiel, D-24098 Kiel (Germany), {rhu,bls}@informatik.uni-kiel.de

3 Visiting the Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA

Abstract— While formal verification has been successfully
used to analyze several academic examples of controlled hy-
brid systems, the application to real-world processing sys-
tems is largely restricted by the complexity of modeling
and computation. This contribution aims at improving the
applicability by using decomposition and deduction tech-
niques: A given system is first decomposed into a set of
physical and/or functional units and modeled by commu-
nicating timed automata or linear hybrid automata. The
so-called Assumption/Commitment method allows to formu-
late requirements for the desired behavior of single modules
or groups of modules.

Model-Checking is an appropriate technique to analyze
whether the requirements (e.g. the exclusion of critical
states) are fulfilled. By combining the analysis results ob-
tained for single modules, properties of composed modu-
les can be deduced. As illustrated for a laboratory plant,
properties of the complete system for which direct model-
checking is prohibitively expensive can be inferred by the
iterative application of analysis and deduction.

Keywords— Abstraction, Assumption/Commitment, De-
ductive Analysis, Discrete Controller, Hybrid System, Veri-
fication.

I. Introduction

The safe and economical operation of processing systems
essentially depends on the correct design of discrete con-
trol algorithms, implemented on Programmable Logic Con-
trollers or Distributed Control Systems. These algorithms
must ensure certain sequences of process steps, a safe shut-
down in abnormal plant situations, and the exclusion of op-
erator inputs that potentially lead to critical process states.
In the last decade, formal verification has been explored as
a possible means to analyze whether the design of a discrete
controller indeed fulfills the requirements for a given plant
[1]. In particular, different approaches of model-checking
[2], [3] have been developed for algorithmic controller ana-
lysis, see e.g. [4], [5], [6], [7]. The common principle of these
approaches is that the controlled process is represented by
a state transition system for which a systematic state-space
search reveals whether a formally specified property is true
for all possible behaviors of the model.

As effective tools are only available for purely discrete

This research was supported by the National Science Foundation
under grants CCR-00-82560 and CCR-00-86096.

or timed state transition systems, approximation tech-
niques were introduced to extend model-checking to dif-
ferent classes of hybrid systems, e.g. [8], [9], [10]. The hy-
brid modeling of processing systems is important in order
to consider the interaction of the continuous process be-
havior with the discrete control inputs. The drawback of
the current approaches for model-checking of hybrid pro-
cess models is the computational cost: so far, successful
applications are restricted to academic examples or small
parts of industrial systems [11].

In order to extend the applicability of verification within
the context of process control, we suggest to combine
model-checking and deduction techniques. The principle
is to decompose the system first into a set of modules
which are small enough to be analyzed by model-checking.
The so-called Assumption/Commitment technique allows
to prove properties for single modules by making some as-
sumptions about their environments. By combining the re-
sults of such local analyses, these assumptions are checked
and revised if necessary. If the local analyses and the com-
bination of their results based on deduction are carried out
iteratively, global properties of the complete system can be
inferred. The advantage of this procedure is that the costly
step of model-checking is applied only to small subsystems.

Numerous approaches related to the proposed Assump-
tion/Commitment method can be found in the litera-
ture. Depending on the underlying formalism they are
called Rely/Guarantee, Assumption/Commitment or As-
sume/Guarantee [12], [13], [14]. However, most of them
were applied to discrete systems and only recently applica-
tions to real time [15], [16], [17] and hybrid systems [18],
[19] were reported. The following sections describe the spe-
cific formulation of the Assumption/Commitment method
that we use to analyze hybrid process models. The proce-
dure is illustrated for a batch production system.

II. The Concept of Modular Analysis
of Processing Systems

As illustrated in Fig. 1, our concept of a modular analysis
of processing systems consists of four steps: the decompo-
sition, the modeling (and abstraction), the analysis of local

1

properties, and the deduction of global properties. In the
decomposition step the plant is first divided into a set of
modules {M1, . . . , Mn}. The modules represent either sin-
gle pieces of equipment (as reactors, valves, sensors etc.) or
groups of devices which form a functional unit (e.g. a tank
including the inlet valves if a filling operation is investi-
gated). The decomposition must consider that the modules
should lead to models that are suitable for model-checking
with respect to their complexity. The behavior is mod-
eled by Communicating Linear Hybrid or Timed Automata
(CLHA, see Sec. IV). They allow to introduce separate
automata {S1, . . . , Sn} for each module, and the analysis
of reachability properties is known to be (semi-)decidable
for this class of systems [20]. The modeling usually com-
prises abstraction in the sense that the parts of the behav-
ior which are irrelevant for the investigation are omitted.
However, for some modules a higher modeling accuracy can
be necessary which requires more complex hybrid behavior
than that provided by CLHA (e.g. switched non-linear dif-
ferential equations). In this case, approximation routines
must be applied in order to obtain verifiable models such
as CLHA (see e.g. [10]).

Plant

Modules

Automata
(timed, hybrid)

Assumptions
about the

Environment

Local
Properties

Global
Property

Decomposition
physical, functional()

Modeling
plus Abstraction()

Formulation of
A/C-Pairs
based on

Model
Checking

Deduction

Deduction

M1

S1

P1

P = P1 Ù P P2 ...Ù Ù n

M2

S2

P2

Mn

Sn

(,)A Pn n(,)A P2 2(,)A P1 1

Pn

...

...

...

...

Fig. 1. The Concept

The following step aims at proving that an automaton
Si fulfills a given “local” property Pi. In our case, we
predominantly address safety properties, i.e. it must be
guaranteed that an undesired state of the automaton Si is
never reached. If the module Si depends on other modules,
Pi might only be true under certain assumptions Ai about
these interactions. A so-called Assumption/Commitment
pair (Ai, Pi) is formulated expressing that Si fulfills a com-
mitment corresponding to the property Pi for some as-
sumptions Ai about its environment. The fulfillment of
(Ai, Pi) as well as the assumptions about the environment

can be proved by model-checking. After it is shown that a
set of local properties P1, . . . , Pn is true for the correspond-
ing automata S1, . . . , Sn, the step of deduction derives a
global property P . This step usually involves logical oper-
ations on the conjunction of the local properties P1, . . . , Pn

in order to show that a logical formula P is true or false.
The deduction can be performed by hand or with the help
of a theorem prover. In the next two sections, we explain
the formulation of A/C-pairs and the deduction of local
and global properties in more detail.

III. Principles of the
Assumption/Commitment Method

In general, the Assumption/Commitment method aims
at proving that a property P is true for a system S un-
der some assumptions about its environment. A modu-
lar analysis can be carried out if S can be decomposed
into modules S1, . . . , Sn and P can be split up into prop-
erties P1, . . . , Pn (with Si corresponding to Pi only). In
most cases, Si |= Pi is rarely fulfilled for all possible
behaviors of Si but rather depends on certain assump-
tions Ai on the environment of Si, which is given by
Ei = S1|| . . . ||Si−1||Si+1|| . . . ||Sn. We write

Si |= (Ai, Pi), (1)

if Si commits itself to Pi under the assumption Ai, and
(Ai, Pi) is called an Assumption/Commitment pair. Hav-
ing shown that Si |= (Ai, Pi) is valid for all i ∈ {1, . . . , n},
it can be deduced that P is fulfilled for the composition of
all modules if additional logical conditions B(P1, . . . , Pn)
for the local properties are satisfied:

S1 |= (A1, P1) ∧ . . . ∧ Sn |= (An, Pn) ∧ B(P1, . . . , Pn)

(S1||S2|| . . . ||Sn) |= (A, P)
.

(2)
Here, A denotes the fraction of the assumptions that re-
mains “open”, i.e. cannot be confirmed based on the Pi.
In order to show that S |= P , the Pi must complement the
Ai in such a way that A = True. To complete the proof
of S |= Pi , it must be shown that the environments Ei do
indeed fulfill the assumptions Ai. Since the environment
Ei itself depends on the interaction with Si, the behavior
of the environment must be considered which corresponds
to the behavior of Si under the assumption Ai. We use SP

i

to denote the restriction of Si to the behavior which fulfills
Pi, plus the behavior that immediately leads to states that
violate Pi. This extension is necessary in order to be able
to analyze the following equations by reachability analysis.
The behavior of Ei under the assumption Ai is denoted by
EA

i . We summarize as follows: Si |= (Ai, Pi) holds if

Si||E
A
i |= Pi. (3)

Embedded in the complete system, Si then fulfills the prop-
erty Pi if

SP
i ||Ei |= Ai. (4)

If there is no feedback from the module Si to its envi-
ronment Ei, i.e. Si cannot restrict Ei, (4) simplifies to
Ei |= Ai.

2

Model-checking can be used to show (3) and (4), (see
Sec. IV-B). If necessary, Ai can be split into parts, each
referring only to a corresponding set of modules of Ei. For
each of these parts, (3) and (4) must be shown. Note that
the proof according to (3), (4) is circular. In order to break
the loop additional logical conditions for the property Pi

are considered. These conditions, named B(P1, . . . , Pn)
above, can e.g. refer to the initial state of the system S.

IV. Using the A/C-Method to Verify
Controllers for Processing Plants

As stated in [21], a main problem in applying the A/C-
method is that the environment Ei includes the entire sys-
tem except for Si. This often makes it impossible to show
(4) because of complexity reasons. When applying the ap-
proach to process control systems, we profit from the spe-
cial structure of the setting. First, the behavior of a piece
of equipment is usually influenced only by a small number
of adjacent devices. It often suffices to investigate a small
set of devices decoupled from the remainder of the plant.
Second, many discrete control functions, especially those
which guarantee process safety, act only locally, i.e. they
obtain measurements only from a few sensors and also af-
fect only a small number of actuators. This considerably
simplifies the application of the A/C-method since it re-
duces the effort to model and to analyze Ei.

A. Modeling with Communicating Linear Hybrid Automata

An important step is to model the modules and the envi-
ronment (for a given assumption) such that (i) the commu-
nication between Si and Ei can be represented, and (ii) the
model can be analyzed by model-checking. We therefore
define Communicating Linear Hybrid Automata (CLHA)
as an extension of the known linear hybrid automata [22]
by input and output variables: A CLHA is a 6-tuple

CLHA = (Loc,Var ,Lab,Edg ,Act , Inv)

with:

• a finite set of locations Loc = {q1, . . . , qp}.
• a finite set of real variables Var = Var in ∪Var int divided
into two disjoint sets of input and internal variables. A
subset Varout ⊆ Var int defines the output variables. A
valuation ν (contained in a valuation set V) is a function
which assigns a real value to each variable x ∈ Var , i.e.,
ν(x) ∈ R. A state of A is a pair (q, ν) of a location and a
valuation.
• a finite set Lab = Labrec∪Labsend ∪Labsync that consists
of three disjoint sets of symbolic labels, called receive labels,
send labels and synchronization labels.
• a finite set Edg of discrete transitions. Each transition
e = (q, l, ρ, q′) between two locations q, q′ ∈ Loc depends
on a label l ∈ Lab ∪ {τ}, with τ denoting an internal tran-
sition, and an enabling transition relation ρ ⊆ V ×V . The
transition e is enabled in state (q, ν) if and only if a valu-
ation ν′ with (ν, ν′) ∈ ρ exists. ν′ denotes the evaluation
that results from the transition taken in state (q, v). We re-
quire ν(x) = ν′(x) for all x ∈ Var in , since input variables

cannot be changed by discrete transitions. Furthermore,
we require that for any location q ∈ Loc there is a special
internal transition (q, τ, {(ν, ν)|ν ∈ V }, q) ∈ Edg , called
“stutter transition”.
• A labeling function Act : Loc ×Var int → R that denotes
the constant rate Act(q, x) = k, k ∈ R with which the
internal variable x changes in location q.
• a labeling function Inv : Loc → 2V assigning an invariant
Inv(q) ⊆ V to each location q ∈ Loc.

Informally, the behavior of CLHA can be understood as
follows: Starting from an initial state (q0, v0) the automa-
ton remains in the current location until a transition is
taken. The continuous evolution within a location is deter-
mined by the activities which are assigned to the internal
variables. A transition must be taken before the invariant is
evaluated to be false. A transition depends on the internal
and input variables, but can also be triggered by synchro-
nization with other modules. The parallel composition of
two CLHA based on synchronization is defined as follows:
A transition that depends on an input label l ∈ Labrec

can occur only when a corresponding output label of an-
other automaton is available. The labels Labsync are used
to model that two automata synchronize on a transition
which is labelled by l ∈ Labsync in both automata. Finally,
a label l ∈ Labsend refers to the case that the transition
does not depend on another automaton but l emits the
information about the transition to the environment. The
output variables x ∈ Varout are used to make the valuation
of the internal variables available for other modules.

B. Formulation and Model-Checking of A/C-Pairs

CLHA are used to model the systems, environments and
assumptions occurring in (3) and (4). When modeling a
subsystem Si, we restrict the behavior to its desired behav-
ior and include an error state that represents the deviation
from normal operation. This is sufficient since we want to
investigate only the occurrence of a failure, not its subse-
quent effects. The modeling is correct if the error state is
not reachable in the composed system. The reachability is
included in the property Pi that we want to check for Si.
Using this approach, the size of the models can be reduced
significantly.

The environment model EA
i must include all plant mo-

dules which have an influence on Si, e.g. the inlet pipes
that supply material to a storage tank. Furthermore, we
introduce separate automata for the (uncontrolled) plant
module Si and its local controller, i.e. the controller is con-
sidered as a part of the environment EA

i . The assumptions
Ai refer to the restrictions that are introduced for the mod-
els that form Ei. Since the operation of the plant is known,
one can usually specify the restrictions that are likely to
enable that Si fulfills its commitment. The assumptions
lead to a reduced representation of the behavior of the en-
vironment and therefore to a significantly smaller model.
For the composition of the CLHA representing EA

i and Si,
model-checking reveals if the error states are not reachable,
i.e. (3) is true.

3

To check (4), we need to model a test automaton AT
i

corresponding to Ai. It contains a state “fail” and must be
constructed such that

SP
i ||Ei||A

T
i |= ¬reach(fail) ⇒ SP

i ||Ei |= Ai . (5)

AT
i models the assumptions and is extended by a failure

state which is reachable only if the assumptions are not
fulfilled. All three automata communicate with each other
by synchronization labels and input/output variables. For
the composition SP

i ||Ei||A
T
i , model-checking then shows if

the state “fail” is reachable. If it is not, the proof according
to (3) and (4) is completed, otherwise the controller has to
be corrected.

By deduction it is shown that each Ai is fulfilled by
P1, . . . , Pn. This can be carried out by hand or with the
aid of software tools for theorem proving. If it is possible
to find a set of properties Pj , j ∈ J ⊆ {1, . . . , n} for each
Ai such that Ai =

∧
j∈J Pj , the deduction becomes trivial

and S fulfills the global property P .

V. Example: A Multi-Product Batch Plant

A. Plant Description

In order to illustrate the proposed approach in a realistic
setting, a laboratory batch plant is chosen as an example
(see Fig. 2). It consists of three tanks to store raw materials
(upper level), three reactors to produce two different prod-
ucts (medium level), and two storage tanks on the bottom
level. The objective is to meet a constant demand for the
products by assigning the vessels to different production
tasks. The raw materials are delivered to the upper level
tanks according to a defined schedule. The plant operation
relies on control programs (implemented on a PLC) which
switch the valves in order to direct the material through
the production lines. Since the control operations depend
on the continuous behavior within the vessels and on the
duration of the chemical reactions, the behavior of the pro-
cess is hybrid.

In the following sections, we focus on the left part of the
plant, which comprises the reactor R21, the valves V111,
V131 and V211, as well as the tanks B11 and B31. Using
the Assumption/Commitment approach we want to inves-
tigate whether the controller operates the plant such that
the storage tank B31 can never overflow and can never run
empty.

B. Modeling and Analysis for a Product Tank

We first focus on the behavior of the controlled vessel
B31, and assume that we can abstract from the other plant
components. Figure 3 shows a very simple CLHA modeling
the liquid level in the tank S1. The tank has a constant
outflow of r1 = 1 cm sec−1 and an inlet valve that fills
the tank at a rate of r2 = 7/3 cm sec−1. If the level
falls to zero the tank goes into an alarm state, and when it
rises above hmax the excess liquid is drained by an overflow
pipe. The tank is connected to a controller, modelled by
S2, that has to keep the level h between 0 and hmax . The
controller opens the inlet valve when the level falls below

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12

B31

R21

V211

B11

B13

V111

V131

Fig. 2. Multi-Product Batch Plant

hfill and closes it when the level reaches hdrain . However,
the controller has other tasks as well and is thus busy for
durations tfill and tdrain after interacting with the tank.
The controller communicates with the tank through the
labels “drain”, “fill” of the type Labsend , therefore marked
with “!”, and it receives the output variable h of the tank
module. The tank has the corresponding labels of the type
Labrec, marked with “?”.

The property to be shown is P = (0 < h < hmax). The
Assumption/Commitment method first calls for the analy-
sis of the tank model combined with an abstract model of
the environment – the latter is reduced to the controller in
this section. We choose the abstract controller model SA

2

shown in Fig. 3, which consists of only two states. It sends
the labels “drain” and “fill” just in time so the tank does
not overflow or drain fully. The CLHA are translated to hy-
brid automata and, using the model-checking tool HyTech
[23], it is verified that:

S1||S
A
2 |= P, (6)

i.e. the error state cannot be reached.
Then it must be checked under which circumstances the

controller fulfills its abstraction. To do so, a test automaton
SAT

2 (see Fig. 3) is constructed that can reach the state
“fail” only if the controller violates its abstraction. This
analysis includes a tank model SP

1 that is restricted to the
behavior that fulfills the property P . We compose the test
automaton with the complete controller model and SP

1 and
check the equation:

SP
1 ||S2||S

AT
2 |= ¬reach(fail). (7)

The parametric analysis with HyTech yields the result that
the state “fail” is not reachable if the following inequalities

4

draining

dh = r- 1

filling

dh = r2

over-
flow

h h³ max

Tank S1

busy1

dt = 1
t t£ fill

busy2

filling

fill!
t' = 0

drain!

Controller S2

draining
dt = 1
h h£ drain

dt = 1
h h³ fill

Test-Automaton for

Abstracted Controller S2

AT

draining

filling

fail

h = hfill

h = hdrain

dt = 1
t' = 0

Abstracted Controller S2

A

draining

filling h < hmax

h > 0

drain! fill!

drain!

h < hmax

fill!

h > 0

h h³ max

h £ 0

drain? fill?
h h< max h > 0

draining

filling

Restricted Tank S1

P

dh = r2

dh = r- 1

h ³ 0

h h£ max

drain? fill?
h h< max h > 0

t t£ drain

drain?

h h£ max

h £ 0
alarm

h ³ 0

dh = 0

dh = 0

Fig. 3. Automata for the tank B31 (S1) and its controller

are fulfilled:

hdrain > hfill

hdrain > r1tdrain
hfill < hmax − r2tfill

(8)

Hence, we get the obviously correct result that the con-
troller must not be busy longer than it takes for the tank
to fill up or to empty.

C. Deductive Analysis for a Set of Modules

The plant part in the previous section was chosen in or-
der to illustrate the CLHA modeling and the proof for one
A/C-pair. We now enlarge the scope of analysis to other
components influencing the controller and the tank B31.
Obviously, the supply of liquid from reactor R21 through
valve V211, and also the feed into R21 have an effect on the
liquid level in B31. For simplicity, we make the assumption
that it is sufficient to consider B11, B13, V111, V131, R21,
V21 and B31 and the supply of raw material to B11 and
B13.

The first step in successively involving further compo-
nents is to analyze whether B31 does not run empty or over-
flow (commitment B̂31) under the assumption that valve

V211 is opened and closed at appropriate points of time
(denoted V̂ 211). Next it has to be shown that the switch-

ing of the valves is achieved by the controller (Ĉontr.2)
and under the condition that the reactor R21 can deliver
the required liquid (assumption R̂21.2). The latter assump-
tion is then verified depending on the behavior of the valves
V111, V131 and the corresponding controller function. Fol-
lowing this scheme, the scope of analysis is extended to
all components which (indirectly) influence the behavior of
tank B31. Table I lists all steps which are involved in this
investigation. In each step, the assumptions and commit-
ments (which are briefly explained in Tab. I) are modeled as
CLHA, and model-checking proves that the commitments
are fulfilled.

Finally the results of these 17 steps of the algorithmic
analysis have to be combined by deduction. As for this
example, it is often possible to formulate each of the as-
sumptions as a conjunction of the commitments proven in
a different step. Hence, these elements can be discharged
from the logical expressions that combines the analysis re-
sults, and it immediately follows that the commitment B̂31
is invariantly true. Note that the parallel composition of
automata modeling Contr.1, . . . , Contr.10 yields a con-
troller that keeps the tank level within its limits. This can
be exploited for controller synthesis and shall be investi-
gated in the future.

VI. Conclusions

This contribution describes an approach to tackle the
problem that hybrid controlled processing systems are in
general too complex for an algorithmic analysis. The de-
composition into small modules usually leads to pairs of
plant components and local properties which have an ap-
propriate size for model-checking. However, it has to
be shown that the environment of a module does behave
such that the local property is always true. The Assump-
tion/Commitment method provides a suitable means to use
abstract models of the environment, and hence to reduce
the effort for the analysis. By successively enlarging the en-
vironment model by further A/C-pairs (representing rele-
vant plant components) it can be proven that a local prop-
erty is true for any plant behavior that might occur, and
therefore is a global property of the plant. The method can
include modules which are modeled by untimed automata,
timed automata and simple hybrid systems, as the class of
CLHA used here.

The advantage of the approach becomes obvious if we
compare the computation times required for the combined
algorithmic and deductive approach with the one for a sin-
gle analysis of the composition of all involved components
(which is possible for this rather small example): While the
latter takes about 10 minutes and around 70 MB of memory
on a standard PC (Celeron, 466 MHz), each of the 17 steps
in the combined approach could be finished in less than
10 seconds and with less than 1 MB of memory. However,
one must balance this against the effort that is necessary
for finding appropriate A/C-pairs. The number of steps
largely depends on choosing appropriate assumptions and

5

TABLE I

Steps of the algorithmic analysis

Step Assumption Commitment Description of the requirements

1 V̂ 211.1 B̂31 Opening and closing of valve V211 assures that B31 does not
overflow or run empty.

2 Ĉontr.2 ∧ R̂21.2 V̂ 211.1 Controller acts on V211 in time and R21 has product ready.

3 V̂ 111.3∧ V̂ 131.3 ∧ Ĉontr.3 R̂21.2 Valves must drain raw materials to R21 in time.

4 Ĉontr.4 ∧ B̂11.4 ∧ R̂21.4 V̂ 111.3 Tank B11 must be ready for draining.

5 Ĉontr.5 ∧ B̂13.5 ∧ R̂21.5 V̂ 131.3 Tank B13 must be ready for draining.

6 Ĉontr.6 ∧ B̂11del.6 B̂11.4 Tank B11 must be ready for the delivery of raw material.

7 Ĉontr.7 ∧ B̂13del.7 B̂13.5 Tank B13 must be ready for the delivery of raw material.

8 Ĉontr.8∧ V̂ 131.8∧ V̂ 211.8 R̂21.4 Reactor R21 has to be ready for being filled from B11.

9 Ĉontr.8∧ V̂ 111.9∧ V̂ 211.8 R̂21.5 Reactor R21 has to be ready for being filled from B13.

10 Contr ∧ B̂31.10∧ V̂ 111.9∧
V̂ 131.8 ∧ R̂21.2

B̂11del.6 Controller must comply with the delivery of raw materials to B11.

11 Contr ∧ B̂31.10∧ V̂ 111.9∧
V̂ 131.8 ∧ R̂21.2

B̂13del.7 Controller must comply with the delivery of raw materials to B13.

12 Ĉontr.4 ∧ B̂11.4 ∧ R̂21.4 V̂ 111.9 The opening of valve V111 transfers liquid from B11 to R21.

13 Ĉontr.5 ∧ B̂13.5 ∧ R̂21.5 V̂ 131.8 The opening of valve V131 transfers liquid from B13 to R21.

14 Ĉontr.14 V̂ 211.8 Valve V211 must be ready for opening.

15 True Ĉontr.2 − 8, 14 Controller always fulfills the assumptions used above.

16 V 211 ∧ R̂21.2 ∧ Ĉontr.16 B̂31.10 B31 behaves according to controller commands if valve V211 and
reactor R21 are ready to supply the product.

17 True Ĉontr.16 Controller closes valve V211 12 sec. after opening.

commitments, and often it is not obvious in which sequence
the plant components should be considered. The focus of
future research is on developing strategies for deriving and
combining A/C-pairs in an efficient manner.

Acknowledgement

The authors thank S. Kowalewski and Y. Lakhnech for
initiating this research. The financial support from the
German Research Foundation (DFG) under grants KO
1430/6-1 and LA 1012/5-1 is gratefully acknowledged.

References

[1] S. Kowalewski, P. Herrmann, S. Engell, R. Huuck, H. Krumm,
Y. Lakhnech, B. Lukoschus, and H. Treseler, “Approaches to the
formal verification of hybrid systems,” at – Automatisierungs-
technik, vol. 49, no. 2, pp. 66–74, 2001.

[2] E.M. Clarke and E.A. Emerson, “Design and synthesis of syn-
chronization skeletons for branching time temporal logic,” in
Logics of Programs Workshop, Dexter Kozen, Ed. 1982, vol. 131
of LNCS, pp. 52–71, Springer.

[3] J. P. Queille and J. Sifakis, “Specification and verification of
concurrent systems in CESAR,” in Proc. 5th Int. Symp. on
Programming. 1982, vol. 137 of LNCS, pp. 337–351, Springer.

[4] A. L. Turk, S. T. Probst, and G. J. Powers, “Verification of real-
time chemical processing systems,” in Hybrid and Real-Time
Systems. 1997, vol. 1201 of LNCS, pp. 259–272, Springer.

[5] I. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke, “Auto-
matic verification of sequential control systems using temporal
logic,” AIChE Journal, vol. 38, no. 1, pp. 67–75, 1992.

[6] T. Park and P. I. Barton, “Formal verification of sequence con-
trollers,” Comp. and Chemical Engineering, vol. 23, pp. 1783–
1793, 2000.

[7] S. Kowalewski, S. Engell, J. Preussig, and O. Stursberg, “Veri-
fication of logic controllers for continuous plants using timed
condition/event system models,” Automatica, vol. 35, no. 3, pp.
505–518, 1999.

[8] A. Chutinan and B. H. Krogh, “Verification of polyhedral-
invariant hybrid automata using polygonal flow pipe approxi-
mation,” in Hybrid Systems: Computation and Control. 1999,
vol. 1569 of LNCS, pp. 76–90, Springer.

[9] T. Dang and O. Maler, “Reachability analysis via face lifting,”
in Hybrid Systems – Computation and Control (HSCC98). 1998,
vol. 1386 of LNCS, pp. 96–109, Springer.

[10] O. Stursberg, “Analysis of switched continuous systems based on

discrete approximation,” in Proc. 4th Int. Conf. on Automation
of Mixed Processes, 2000, pp. 73–78.

[11] S. Engell, S. Kowalewski, C. Schulz, and O. Sturs-
berg, “Continuous-discrete interactions in chemical processing
plants,” Proceedings of the IEEE, vol. 88, no. 7, pp. 1050–1068,
2000.

[12] J. Misra and K. M. Chandy, “Proofs of networks of processes,”
IEEE Transactions on Software Engineering, vol. 7, no. 7, pp.
417–426, 1981.

[13] A. Pnueli, “In transition for global to modular temporal rea-
soning about programs,” in Logics and Models of Concurrent
Systems. 1984, vol. 13 of NATO ASI-F, Springer.

[14] M. Abadi and L. Lamport, “Conjoining specification,” ACM
Transactions on Programming Languages and Systems, vol. 17,
no. 3, pp. 507–534, 1995.

[15] J. Hooman, “Compositional verification of real-time applica-
tions,” in Proc. Compositionality - The Significant Difference.
1997, vol. 1536 of LNCS, pp. 276–300, Springer.

[16] E. Chang, Z. Manna, and A. Pnueli, “Compositional verifica-
tion of real-time systems,” in Proc. 9th IEEE Symp. Logic in
Computer Science, 1994, pp. 458–465.

[17] R. Alur and T. A. Henzinger, “Modularity for timed and hybrid
systems,” in Proc. of the 8th Int. Conf. on Concurrency Theory.
1997, vol. 1243 of LNCS, pp. 74–88, Springer.

[18] T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran,
“You assume, we guarantee: Methodology and case studies,”
in Proc. 10th Int. Conf. on Computer-Aided Verification. 1998,
vol. 1427 of LNCS, pp. 440–451, Springer.

[19] R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang,
“Automating modular verification,” in Proc. 10th Int. Conf.
on Concurrency Theory. 1999, vol. 1664 of LNCS, pp. 82–97,
Springer.

[20] G. Lafferriere, G. J. Pappas, and S. Yovine, “Decidable hybrid
systems,” in Proc.: School on Computational Aspects and Ap-
plications of Hybrid Systems, Grenoble, 1998.

[21] O. Kupferman and M. Y. Vardi, “On the complexity of mo-
dular model checking,” in Proc. 10th IEEE Symp. on Logic in
Computer Science, 1995, pp. 101–111.

[22] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The
algorithmic analysis of hybrid systems,” Theoretical Computer
Science, vol. 138, pp. 3–34, 1995.

[23] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A
model checker for hybrid systems,” Software Tools for Tech-
nology Transfer, vol. 1, no. 1/2, pp. 110–122, 1997.

6

